
SnaPEA: Predictive Early Activation for Reducing
Computation in Deep Convolutional Neural Networks

Vahideh Akhlaghi∗ Amir Yazdanbakhsh∗† Kambiz Samadi‡ Rajesh K. Gupta Hadi Esmaeilzadeh
Alternative Computing Technologies (ACT) Lab

†Georgia Institute of Technology ‡Qualcomm Technologies, Inc. University of California, San Diego

vakhlaghi@eng.ucsd.edu a.yazdanbakhsh@gatech.edu ksamadi@qti.qualcomm.com gupta@eng.ucsd.edu hadi@eng.ucsd.edu

Abstract— Deep Convolutional Neural Networks (CNNs)
perform billions of operations for classifying a single input. To
reduce these computations, this paper offers a solution that leverages
a combination of runtime information and the algorithmic structure
of CNNs. Specifically, in numerous modern CNNs, the outputs of
compute-heavy convolution operations are fed to activation units
that output zero if their input is negative. By exploiting this unique
algorithmic property, we propose a predictive early activation
technique, dubbed SnaPEA. This technique cuts the computation
of convolution operations short if it determines that the output will
be negative. SnaPEA can operate in two distinct modes, exact and
predictive. In the exact mode, with no loss in classification accuracy,
SnaPEA statically re-orders the weights based on their signs and
periodically performs a single-bit sign check on the partial sum.
Once the partial sum drops below zero, the rest of computations can
simply be ignored, since the output value will be zero in any case.
In the predictive mode, which trades the classification accuracy
for larger savings, SnaPEA speculatively cuts the computation
short even earlier than the exact mode. To control the accuracy, we
develop a multi-variable optimization algorithm that thresholds the
degree of speculation. As such, the proposed algorithm exposes a
knob to gracefully navigate the trade-offs between the classification
accuracy and computation reduction. Compared to a state-of-the-art
CNN accelerator, SnaPEA in the exact mode, yields, on average,
28% speedup and 16% energy reduction in various modern CNNs
without affecting their classification accuracy. With 3% loss in
classification accuracy, on average, 67.8% of the convolutional
layers can operate in the predictive mode. The average speedup and
energy saving of these layers are 2.02× and 1.89×, respectively. The
benefits grow to a maximum of 3.59× speedup and 3.14× energy
reduction. Compared to static pruning approaches, which are
complimentary to the dynamic approach of SnaPEA, our proposed
technique offers up to 63% speedup and 49% energy reduction
across the convolution layers with no loss in classification accuracy.

Keywords-Deep Neural Networks; DNN; Convolutional Neural
Networks; CNN; Accelerators; Computation Reduction; Predictive
Early Activation; Approximate Computing

I. INTRODUCTION

Deep Convolutional Neural Networks (CNNs) are among the

most widely used family of machine learning methods that have

had a transformative effect on a wide range of applications. CNNs

require ample amounts of computation even for a single input

query. For instance, assigning a label to a relatively small RGB

image (224×224×3) from the ImageNet database [1] requires

billions of multiply-and-accumulate operations [2]–[4]. This paper

aims to reduce these copious amount of computation by exploiting

both their runtime information and algorithmic structure. In

convolutional layers of many modern CNNs, each convolution

operation is commonly followed by an activation function called a

Rectifying Linear Unit (ReLU) that returns zero for negative inputs

and yields the input itself for the positive ones. We observe that a

∗Vahideh Akhlaghi and Amir Yazdanbakhsh contributed equally.

AlexNet

GoogLeNet

SqueezeNet

VGGNet

Average
0%

20%

40%

60%

80%

100%

N
eg

at
iv

e
In

pu
ts

to
th

e
A

ct
iv

at
io

n
La

ye
rs

Figure 1: Fraction of activation input values that are negative.

large fraction of ReLU outputs are zero, indicating a large number

of negative convolution outputs. Figure 1 illustrates this trend

among several modern CNNs where ReLU nullifies 42%-68% of

inputs. In addition, comparing the outputs of intermediate convolu-

tional layers for different input images shows the zero values vary

spatially across the images. Figure 2 illustrates this insight across

two images passing through GoogLeNet [5]. The highlighted

differences in the output of the intermediate convolutional layer

attest to the varying spatial distribution of zeros. Harnessing these

insights, we devise SnaPEA, a holistic software-hardware solution,

that cuts a large fraction of the computations short by identifying

the zero intermediate values earlier during the runtime.

SnaPEA operates in two distinct modes, namely exact and

predictive. In the exact mode, in which the classification accu-

racy remains unchanged, SnaPEA detects the zero values by

static re-ordering of weights along with a low-overhead sign-bit

monitoring of partial sums. A negative partial sum triggers early

termination of convolution operations. SnaPEA, in the predictive

mode, trades off the classification accuracy for larger computation

savings by predicting the zero values. Predictive mode results

in earlier termination of the convolution operations compared

to the exact mode, further reducing the amount of computation.

Notwithstanding the higher benefits of predictive mode, an undisci-

plined prediction of zero values leads to significant loss compared

to the nominal CNN classification accuracy. To minimize this

loss while maximizing the reduction in computation, we pro-

pose a co-designed hardware-software solution that (1) statically

pre-arranges the weights, (2) determines a threshold for triggering

predictive early activation, and (3) uses a low-overhead runtime

monitoring mechanism to apply the early activation. As such,

SnaPEA makes the following contributions:

1) SnaPEA leverages the algorithmic structure of CNNs to
to reduce their computation. This work provides an insight

that the amount of computation in CNNs can be significantly

reduced by using a combination of runtime information along

SnaPEA: Snappy Predictive Early Activation

662

2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture

2575-713X/18/$31.00 ©2018 IEEE
DOI 10.1109/ISCA.2018.00061

C
o

nv
R

eL
U Convolution

Softmax
Pooling

Concatenation

Normalization
ReLU

C
o

n
CCCCCC

vvvv
R

e L
U

Intermediate
Feature Maps

ReLU
Activation

Convolution
Operation

C
o

nv
R

eL
U

C
o

nv
R

eL
U C

o
nv

R
eL

U
C

o
nv

R
eL

U

C
o

nv
R

eL
U

C
o

nv
R

eL
U

C
o

nv
R

eL
U

C
o

nv
R

eL
U

C
o

nv
R

eL
U

C
o

nv
R

eL
U

C
o

nv
R

eL
U

C
o

nv
R

eL
U

C
o

nv
R

eL
U

C
o

nv
R

eL
U

R
eL

U

Figure 2: GoogLeNet [5], in which the intermediate feature maps for two input images are magnified. The ellipses on the intermediate feature maps highlight the
varying spatial distribution of non-zero values for distinct input images.

with the algorithmic structure of CNNs, which feeds many

negative inputs to the activation function.

2) SnaPEA is a runtime technique that cuts the CNN
computations short. Exploiting the aforementioned insight,

this paper devises an exact runtime approach that relies on

a single-bit sign-check to cut the computation short without

losing any accuracy. In addition, SnaPEA comes with a

predictive mode that speculates on the outcome of sign-check

and terminates the computation even earlier, trading off

accuracy for less computation.

3) SnaPEA provides hardware-software solution to control
the accuracy trade-offs. We develop a multi-variable

optimization algorithm that systematically thresholds the

degree of speculation based on the sensitivity of the CNN

output to each layer. The threshold becomes a knob for

controlling the accuracy-computation tradeoff.

To evaluate the effectiveness of the proposed technique, we

evaluate it on a number of modern CNNs. In the exact mode,

which has no effect on the classification accuracy, SnaPEA,

on average, delivers 28% (maximum of 74%) speedup and

16% (maximum of 51%) energy reduction over EYERISS [2], a

state-of-the-art CNN accelerators. With 3% loss in classification

accuracy, on average, 67.8% of the convolutional layers can

operate in the predictive mode. The average speedup and energy

saving of the layers in the predictive mode over EYERISS are

2.02× and 1.89×, respectively. GoogLeNet sees the maximum

benefit of 3.59× speedup and 3.14× energy reduction. Finally,

we evaluate the benefits of SnaPEA along with static pruning

techniques using the already pruned SqueezeNet CNN [6]. In

the exact mode, SqueezeNet achieves 30% speedup and 15%

energy reductions with no loss of accuracy, demonstrating the

complimentary nature of SnaPEA’s dynamic approach to the

static pruning techniques. Overall, these benefits suggests that

coalescing runtime information with algorithmic insights can lead

to new avenues for reducing the heavy computations of CNNs.

II. SNAPEA HARDWARE-SOFTWARE SOLUTION

SnaPEA provides a hardware-software solution to reduce the

computation in a given CNN. The software part of SnaPEA, illus-

trated in Figure 3, is comprised of two distinct passes: one for the

exact mode, and the other for the predictive mode. In the latter pass,

the solution finds the thresholds for speculation while considering

the acceptable loss in accuracy. In both cases, the task is to reorder

weights of the convolution kernels, depending on the operating

mode. To utilize these transformations, the SnaPEA comes with

an accelerator design that can efficiently execute the CNN with

reordered convolution weights with support for early termination

of convolution. This section overviews the hardware and software

components of SnaPEA.

A. SnaPEA Software Workflow

Figure 3 depicts the software workflow of SnaPEA which takes

a CNN model, an acceptable accuracy loss, and an optimization

dataset as its inputs. The CNN goes through the multiple passes of

this workflow. The first pass, called Convolution Layer Extraction,

elicits the convolution kernels of the CNN. Then, the weights

of each kernel are re-ordered through the remaining passes,

depending on the operating mode, exact or predictive.

Software workflow in the exact mode. To develop this flow,

we leverage the observation that in the CNNs with ReLU

activation layers, the inputs to the convolution layers are positive.

Consequently, in these layers, the convolution output remains

positive by performing Multiply-Accumulate (MAC) operations

with the positive subset of the weights. Only performing the

remaining MAC operations with the negative subset of the weights

can turn the convolution output negative. Given this insight, in

the exact mode, Sign-Based Weight Reordering pass reorders the

weights of convolution kernels based on their sign such that the

positive subset are followed by the negative subset. The reordering

enables SnaPEA to first perform MAC with the positive subset

and then cut the computation and apply activation function earlier

663

���������

������	��

������
��
�

�

��

�
��

�
�

�
��

���
��

��
��

�

��
��

��
�

��

�

���
�

���������
���������

�����������

���������
���������

��������	��

���������
���������

��������
��

�

��

��
!�

��
�"�

�

�

#�

$

��
�

!�
��

�"�
�

�

���������
���������

��
�����

���������
���������

��
����	

���������
���������

��
����

�

��
��

%&
��

�'
�(

��
�)

��
*�

�
'�

���
�

�(
��

�)
��

*�

�

'�
���

�

���������
���������

��+��,
�-

�*�
�'���'�(���)���

�����������

�*�
�'���'�(���)���

��������	��

�*�
�'���'�(���)���

��������
��

�

�����%*�
�'���'�
(���)���
�����������

�����%*�
�'���'�
(���)���
��������	��

�����%*�
�'���'�
(���)���
��������
��

�

�
�
�

.������$���

������
����������
��.�������

!����"��
��
/������

�

��

�
��

�
��

+�
��

��
�+

��
,

�
-

��
��

��0

'

�
��

�'
���

��
�0

'
�

Figure 3: Software workflow for SnaPEA.

in the case of observing a negative partial output during the

computation with negative weights.

Software workflow in the Predictive mode. To reduce the com-

putations further, SnaPEA in the predictive mode, speculates on

the sign of the convolution outputs before starting to go through

the negative weights. A thresholding mechanisms controls the

aggressiveness of the speculation. The intuition is that if the partial

output of a convolution after a certain number of MAC operations

is less than a threshold, the final convolution output will likely be

negative. In this mode, since SnaPEA may misspeculate a positive

convolution output as negative, the final classification accuracy

may decline. Therefore, to utilize this intuition effectively, the

software part of SnaPEA needs to deliberately determine: (1) a

threshold value and (2) its associated number of MAC operations,

such that the loss in the classification accuracy remains below the

acceptable level while the computation reduction is maximized.

These two speculation parameters need to be determined for as

many layers as possible to maximize the benefits. To determine

a proper set of parameters, SnaPEA formulates the problem as

a multi-variable constrained optimization problem, and provides

a greedy algorithm to solve it (See Section IV for more details).

The algorithm is run by the software part on the Optimization
Dataset through the following three passes. This triad of passes is

to mange the complexity of accounting for the combined effects

of the layers without an exponential explosion of the search space.

First, the software statically runs a characterization pass, named

Kernel Profiling, that measures the sensitivity of the accuracy to

the imprecision introduced in each kernel in isolation. According

to this sensitivity, the Kernel Profiling pass determines a set of

speculation parameters for each kernel. Then, the next pass (Local
Optimization) consolidates the kernel parameters of each layer and

identifies a set of speculation parameters for the layer. This pass

also considers the effects of speculation in each layer in isolation.

Finally, the Global Optimization pass iteratively adjusts the specula-

tion parameters of all layers such that the cross-layer effect yields

an acceptable accuracy with the maximal computation reduction.

The optimization algorithm runs once offline and does not impose

additional runtime overhead during the execution of CNNs.

Based on the obtained speculation parameters for the entire

network, the weights of each kernel are reordered by the Weight

Reordering pass. This pass reorders the kernel weights by placing

the ones determined by the speculation parameters ahead of the

others. Then, the remaining weights are reordered based on the

same procedure used for the Sign-Based Weight Reordering pass,

which puts the negative weights after the positive ones. Finally,

these reordered weights determine the execution of the CNN on

the SnaPEA hardware.

B. SnaPEA Hardware Architecture

The SnaPEA architecture comprises number of identical

Processing Engines (PEs), each of which is designed to compute a

convolution using the reordered weights. To support computation

with the reorderings, each PE is equipped with an index buffer

that hold the indices of weights in the original kernel. The PE

uses this index buffer to fetch the corresponding input value

for each weight. This design is necessary because SnaPEA can

reorder the weights but cannot tamper with the order of the inputs

or activation. Section V expounds this design. The following

provides an overview of the execution flow of a single convolution

window in the exact and predictive modes.

Convolution execution flow in the exact mode. The PE first

performs the operations of the positive weights. For the negative

weights, the PE probes the sign of each partial sum value before

proceeding to the next MAC operation. As soon as the partial sum

becomes negative, the PE terminates the convolution early and

triggers the early activation. Once the early activation is triggered,

the PE is free to perform the computations of another convolution

window. The sign-bit check merely requires a single AND gate,

a low overhead addition to the PE.

Convolution execution flow in the predictive mode. In the

predictive mode, each PE speculates the sign of the convolution

output by comparing the partial sums with a threshold value

after performing a pre-determined number of MAC operations.

As mentioned, both the threshold and the number of operation

are determined in the SnaPEA software workflow. If the partial

result is less that the threshold, PE can speculatively terminate

the convolution and compute the activation early. That is, the PE

outputs a zero for the current convolution window. To support

this speculative execution, each PE is equipped with a unit called

Predictive Activation Unit (PAU) (See Section V).

664

�������

	
����

-5 +1 -1

+1 +2 +6

CONV -9 0ReLU
-9

(a)

+1 -5 -1

+2 +1 +6

�������

	
����
CONV -3 SnaPEA 0ReLU

-3

(b)

�������

	
����

+1 -5 -1

+2 +1 +6

CONV +2 SnaPEA 0ReLU
-1

(c)

Figure 4: A 1×3 convolution in (a) unaltered (b) exact, and (c) predictive modes.
In the latter two, the weights and their corresponding inputs are reordered.
The white boxes highlight the operations that are cut.

III. COMPUTATION REDUCTION IN SNAPEA

Figure 4 demonstrates how SnaPEA reduces the computation by

an example of 1×3 convolution. Figure 4a performs the unaltered

convolution in which all of the MAC operations are performed

and yields “-9” as the output. Figure 4b illustrates convolution in

the exact mode. In this mode, SnaPEA reorders the weights based

on their sign, and starts the computation with the positive weights.

The computation is terminated after performing only two MAC

operations as the results is already negative, “-3”. The simple sign

check stops the computation. Although the partial sum after two

MAC operations (“-3”) has not reached the final convolution output

(“-9”), it will be converted to zero by the following ReLU operation.

As such, the results is the same as the unaltered convolution.

Therefore, the exact SnaPEA does not change the final output

after ReLU and does not lead to accuracy degradation.

Figure 4c illustrates how predictive mode cuts the operations ear-

lier than the exact mode. As shown, after performing the MAC op-

erations on only one weight, SnaPEA predicts that the convolution

value will eventually be negative. Even though the corresponding

partial sum value is positive (“+2”), SnaPEA speculatively triggers

the ReLU function early with a negative value (e.g., “-1”) and puts

out zero. This speculation reduces the computation from two in the

exact mode to one. In real-world CNNs, convolution is most often

3D and requires a relatively large number of MAC operations as

depicted in Figure 5a. Using these methods, SnaPEA can forgo

a significant number of the MAC operations as illustrated in 5b.

IV. SNAPEA SOFTWARE OPTIMIZATION

Significant computation reduction provided by the predictive

mode comes at a price of experiencing loss in the classification

accuracy due to misspeculating positive outputs as negative ones.

To avoid unacceptable loss while maximizing the computation

reduction, the predictive pass in the software part of SnaPEA,

aims to systematically control the degree of speculation by

properly determining the speculation parameters. To determine

the parameters, the predictive pass formulates the problem as a

constrained optimization problem, and designs a greedy algorithm

to solve it. In this section, we first elaborate on the speculation

ReLUConv

n∑
i=0

xi ×wi

(a)

ReLUConv

n∑
i=0

xi ×wi

(b)

Figure 5: (a) The unaltered 3D convolution where all the MAC operations
(bubbles) are carried out. (b) The same convolution with SnaPEA, where a sig-
nificant number of operations are eliminated, delineated by the white bubbles.

parameters, and then explain the problem formulation and the

algorithm to determine the parameters.

A. Speculation Parameters

As mentioned in Section II-A, speculation on the sign of a

convolution output is performed by comparing the partial result

of a set of MAC operations with a threshold value. Therefore,

the threshold value and its associated set of operations are the

parameters that control the degree of speculation. The threshold is

merely a value that is required to be determined by the software for

the controlled speculation. However, to determine a proper set of

operations, the software requires to select the proper weights. One

approach to select the weights would be to sort the weights in de-

scending order of their absolute values, and select those with larger

magnitude as a set of operations for performing the speculation.

In this approach, although the contributions of both positive and

negative weights are taken into account, the classification accuracy

drastically declines. The reason is that selecting the weights with

the larger magnitude ignores the contributions of input values

which are, to a large degree, random and data dependent.

To mitigate the mentioned issue, SnaPEA sorts the weights

in ascending order, partitions them into a number of smaller

groups, and selects the weight with the largest magnitude from

each group. This approach enables even the smallest weights to

appear in the set of operations for the speculation; consequently,

the smaller weights that may couple with large input values have

an opportunity to contribute to the speculation. In this approach,

to select a proper set of operations, the software only requires to

determine the number of groups. This means that the number of

groups can be exploited as an indicator of a set of operations in the

speculation parameters. Accordingly, we denote the speculation

parameters of all kernels in all layers of a CNN as (Th,N), in

which Th is a list of threshold values and N is a list of the number

of groups for selecting the corresponding operations.

B. Problem Formulation

The problem of finding the speculation parameters (i.e., (Th,N))
to maximize the computation reduction with an acceptable loss can

665

be formulated as an optimization problem. In order to formulate

the problem, we measure the computation reduction by subtracting

the number of MAC operations that are performed by SnaPEA

from the one performed by an unaltered CNN. However, since

the number of MAC operations in the unaltered CNN is constant

across various inputs, maximizing the computation reduction

becomes equivalent to minimizing the number of MAC operations

performed by SnaPEA. Accordingly, we define a function that

calculates the number of MAC operations in SnaPEA as follows.

Let od
l,k be the result of a single convolution window obtained

by kernel k in layer l with the speculation parameters Thk
l and Nk

l
for the input image d. The number of MAC operations to compute

od
l,k can be calculated by the function Op shown in (1). Let assume

that the reordered weights are stored in a 1D array such that the

Nk
l speculation weights are placed at the beginning of the array

while the remaining positive weights followed by the remaining

negative weights are placed at the end. The function in (1) returns

Nk
l if the value of partial sum after performing Nk

l operations (i.e.,

PartialSumNk
l
) is less than the threshold value Thk

l . Otherwise,

the number of operations is determined by checking the sign of

the partial sum value obtained by performing operations with the

negative weights (i.e., PartialSumw−). If a negative partial sum

is observed, the function returns the index of the corresponding

negative weight in the array (i.e., Idxw−). If none of the above

cases occurs (last part in 1), the number of operations is set to the

total number of weights in the kernel. Total number of weights

of the kernel is Cin,l ×Dk
l ×Dk

l , in which Cin,l is the number of

input channels of the layer l, and Dk
l is the kernel width.

Op(od
l,k,Thk

l ,N
k
l)=

⎧⎪⎪⎨
⎪⎪⎩

Nk
l , if PartialSumNk

l
≤Thk

l ,

Idxw−, if PartialSumNk
l
>Thk

l and PartialSumw− ≤0,

Cin,l×Dk
l ×Dk

l , otherwise

(1)

The amount of computation to produce all the convolution

outputs is the sum of the number of MAC operations required

to produce each individual output. Based on this definition, the

problem is translated into finding the speculation parameters that

minimize total number of MAC operations and meet the constraint

on the accuracy loss, which can be formulated as the following

constrained optimization problem.

Let L be a set of all the layers in a given CNN, Kl a set of all

the kernels in layer l, D an optimization dataset, ε an acceptable

accuracy loss, Thk
l and Nk

l the speculation parameters of kernel k
of layer l, Od

l,k the outputs of the convolution generated by kernel

k in layer l for the input image d from D, and AccuracyCNN and

AccuracySnaPEA the classification accuracy of the CNN and the

classification accuracy obtained by SnaPEA, respectively. Now,

(Th,N) can be determined by solving the following problem:

min
Th,N

∑
d∈D

∑
l∈L

∑
k∈Kl

∑
o∈Od

l,k

Op(o,Thk
l ,N

k
l)

subject to AccuracyCNN−AccuracySnaPEA≤ε
(2)

C. Finding the Speculation Parameters

In order to solve the optimization problem formulated as (2), we

devise a greedy algorithm (i.e., Algorithm 1). The algorithm takes

Algorithm 1 Finding the threshold value and its associated

number of operations for all kernels in a CNN

1: Inputs: CNN: a CNN model, D: an optimization dataset,
ε: Acceptable loss in classification accuracy

2: Outputs: ParamCNN:
Speculation parameters (Th,N) for the CNN

3: // Analyze each kernel individually
4: function KERNELPROFILINGPASS(CNN,D,ε)
5: Initialize ParamK[l][k]→ /0
6: for ∀ layer l in CNN do
7: for ∀ kernel k in layer l do
8: for a set of values (th,n) do
9: op, err = Simulate(CNN, D, k, th, n)

10: if err≤ε then
11: ParamK[l][k].append((th,n,op))

12: Sort ParamK[l][k] based on op

13: return ParamK
14: // Local Optimizer to find a set of params for each layer individually
15: function LOCALOPTIMIZATIONPASS(CNN,D,ε,ParamK)
16: for layer l in CNN do
17: for t in range(0,T) do
18: for k in layer l do
19: param = ParamK[l][k][t]

20: op, err = Simulate(CNN,D,ε,param)
21: if err ≤ε then
22: ParamL[l].append((param,op,err))

23: return ParamL
24: // Parameter tuning to accommodate for cross-kernel effect
25: function ADJUSTPARAM(CNN,ParamCNN,ParamL)
26: for ∀ layer l in CNN do
27: for ∀ t in range(len(ParamL[l])) do
28: meritL[l][t]=

-(ParamL[l][2]-ParamCNN[l][2])

(ParamL[l][1]−ParamCNN[l][1])

29: l,t = Argmax(meritL)
30: return (l,t)

31: // Global Optimizer to find the parameters for the entire network
32: function GLOBALOPTIMIZATIONPASS(CNN,D,ε,ParamL)
33: for ∀ layer l in CNN do ParamCNN[l] = ParamL[l][0]

34: err = Simulate(CNN,D,ParamCNN)
35: while err>ε do
36: l,t=ADJUSTPARAM(CNN,ParamCNN,ParamL)
37: ParamCNN[l] = ParamL[l][t]
38: remove ParamL[l][t] from ParamL[l]
39: err = Simulate(CNN,D,ε,ParamCNN)

40: return ParamCNN
41: Initialize ParamCNN[l]→ /0
42: ParamK= KERNELPROFILINGPASS(CNN,D,ε)
43: ParamL= LOCALOPTIMIZATIONPASS(CNN,D,ε,ParamK)
44: ParamCNN=GLOBALOPTIMIZATIONPASS(CNN,D,ε,ParamL)

a CNN, an optimization dataset D, and an acceptable accuracy loss

ε and returns a list named ParamCNN that stores the value of the

speculation parameters (Th,N). The algorithm first characterizes

the sensitivity of the CNN to the speculation performed in each

kernel in isolation. Then, it adjusts the speculation parameters for

all the kernels through a greedy search such that they cooperatively

minimize the computation while keeping the loss less than ε.

Accordingly, we break the algorithm into two main stages (i.e.,

the profiling and the optimization stage) as follows:

Profiling stage. Function KernelProfilingPass in Algorithm 1 pro-

files the number of operations (op) and the accuracy loss (err)

666

corresponding to various values of (Thk
l ,N

k
l) for the kernel k in

layer l. The exact mode of each kernel is also included in the pro-

filing results by setting (0,1) as one of the values for its (th,n). The

process is repeated for all the kernels in the CNN. The acceptable

profiling results in terms of the accuracy loss, are accumulated in

a list called ParamK. Each sub-list ParamK[l][k] in the list ParamK
is sorted in ascending order based on the value of op.

Optimization stage. The optimization stage evaluates the

combined effects of kernels and determines the proper speculation

parameters for them. To avoid the complexity of evaluating the

combined effects, the optimization stage consists of two functions:

LocalOptimizationPass and GlobalOptimizationPass. The function

LocalOptimizationPass in Algorithm (1), aims to evaluate the

combined effects of kernels in each layer when the speculation

is performed in the layer in isolation. Then, the function identifies

a set of speculation parameters for each individual layer separately

that leads to acceptable accuracy with minimum operations. To do

this, the function LocalOptimizationPass generates T configurations

for layer l such that in the t-th configuration, the speculation

parameters of kernel k is set to t-th profiled parameters from the

sorted list ParamK[l][k]. The configurations yielding an acceptable

accuracy are selected as the set of configurations for the layer l.
The acceptable configurations of all layers are populated in a list

called ParamL, and passed to the next function.

The second function, GlobalOptimizationPass, evaluates the

effect of speculation performed in all the layers simultaneously and

adjusts their speculation parameters with respect to the cross-layer

effect on the classification accuracy and computation reduction.

The output of the function is the final speculation parameters for

all the kernels in the CNN which is stored in the list ParamCNN.

To find the final parameters, the function first initializes the

ParamCNN by setting the speculation parameters of each layer

l to ParamL[l][0]. This initialization leads to the maximum

computation reduction given the configurations stored in ParamL.

However, the accuracy loss obtained by the initial setting may

not be acceptable. In case of meeting the desired accuracy, the

current parameters in ParamCNN is returned. Otherwise, the

parameters are adjusted iteratively until the accuracy loss becomes

less than ε. For adjusting the parameters, in the next iteration,

those parameters are of interest that lead to small increase in the

number of operations while large improvement in the classification

accuracy. Hence, we define a merit value as −Δerr/Δop, where

the larger the Δerr and the smaller the Δop are, the larger the

merit is. Accordingly, the function GlobalOptimizationPass selects

the configuration with the maximum merit value among all

the configuration in ParamL and updates the corresponding

speculation parameters in the list ParamCNN.

V. ARCHITECTURE DESIGN FOR SNAPEA

SnaPEA provides an accelerator architecture in order to effi-

ciently execute the CNN with the transformed convolution opera-

tions. Modern CNNs consist of several back-to-back layers includ-

ing convolution, ReLU activation, pooling, and fully-connected.

To provide an end-to-end solution, the accelerator architecture

consists of several units to execute the computation of all layers in

the CNN. In order to efficient execution of CNNs, the architecture,

specifically, targets to optimize the hardware of the convolution

layers because of the following reasons. The first reason is that

the computation of the convolution layers dominates the overall

runtime of modern CNNs [2], [3], [7]–[10]. The second reason

is to execute the convolutions with the reordered weights and to

support the predictive early activation at the hardware level. To

perform the computations of the fully-connected layers, the same

hardware unit designed for the convolution layers is employed.

The fully-connected layers are mainly used to perform the actual

classification. CNNs usually have much smaller number (i.e. one or

two) of fully-connected layers compared to the convolution layers

at the final stage of the network. For example, GoogleNet has 57

convolution layers and only one fully-connected layer. On average,

the computation of fully-connected layers accounts for ≈1% of

the total number of computations performed in CNNs [2], [3], [8].

Therefore, using the same hardware unit for the fully-connected

layers has virtually no impact on the total runtime of the CNNs.

Finally, the SnaPEA architecture consists of dedicated units to

support the computations of ReLU activation and pooling layers

as well.

Figure 6 (a) illustrates the high-level block diagram of the

proposed accelerator architecture. The accelerator consists of a 2D

array of identical Processing Engines (PEs). Each PE is equipped

with an input and output buffer that communicates with the

off-chip memory. The weights of kernels and the inputs—coming

from an off-chip memory—are stored in the dedicated buffers

within each PE. In the following, we explain each unit of the

accelerator architecture in more details.

Processing Engine (PE). Figure 6 (b) depicts the microarchitec-

ture of one PE in the SnaPEA architecture. Each PE comprises

multiple compute lanes, a weight and index buffer, an input/output

buffer, and multiple Predictive Activation Units. Each compute

lane consists of one dedicated Multiply-and-Accumulate (MAC)

unit and one Predictive Activation Unit (PAU). The weight, index,

and input/output buffers are shared across all the compute lanes

within each PE. The computation of a convolution layer in each PE

starts upon receiving a block of input features, their corresponding

weights, and the weight indices from the off-chip memory. In every

cycle, the PE controller reads one weight value from the weight

buffer and broadcasts it to all the compute (MAC units) lanes. The

PE controller also reads one weight index from the index buffer

and sends the fetched index to the input buffer. Upon receiving

the index, the input buffer reads a set of values (one value per

each MAC unit) and sends them to the MAC unit for processing.

Each compute lane is dedicated to perform all the computations

of one convolution window. That is, each MAC unit performs

the multiplication of one input and weight for each convolution

window and sends the results to the accumulation register. The

accumulation register accumulates the partial sums for each

convolution window. At the same time, the Predictive Activation

Unit (PAU) checks the values of the partial sums to determine

whether further computations for each convolution window is

667

(b) PE Microarchitecture

��
��

�
��

�
	

��
	
����

���
�����	�
��
���	�����	

�

�

�������
����

��
�
�
�

��
�
�
�

�	��������	

�	��

�
��
��

�
��

�
	

�	��

�
	��!"���
�!"#�"���
�����$���%

(a) Block Diagram of SnaPEA Architecture

����������

���

PE00

���

����������

���

PE10

���

����������

���

PE0n

���

����������

���

PE1n

���

����������

���

PEm0

���

����������

���

��
��

�
��

�
	

�
��
��

�
��

�
	

�
	�
��

�
��

�
	

��
�	

�
��

�
	

��
��

�
��

�
	

�
��
��

�
��

�
	

�
	�
��

�
��

�
	

��
�	

�
��

�
	

��
��

�
��

�
	

�
��
��

�
��

�
	

�
	�
��

�
��

�
	

��
�	

�
��

�
	

��
��

�
��

�
	

�
��
��

�
��

�
	

�
	�
��

�
��

�
	

��
�	

�
��

�
	

��
��

�
��

�
	

�
��
��

�
��

�
	

�
	�
��

�
��

�
	

��
�	

�
��

�
	

��
��

�
��

�
	

�
��
��

�
��

�
	

�
	�
��

�
��

�
	

��
�	

�
��

�
	

PEmn

���

�
��

��
�

�
	��!"���
�!"#�"���
�����$���%

������	�&��	�'

������	�&��	�(

������	�&��	

Figure 6: (a) The overall structure of the SnaPEA architecture and its multilevel memory hierarchy, containing an off-chip memory and a distributed on-chip buffer
for input and outputs. (b) The microarchitecture of each PE. The weights are shared across the compute lanes.

required. If the PAU determines that no further computations for

a convolution window is required, it data gates the corresponding

multiplier and accumulator to save energy. This process continues

until either all the computations for the current convolution window

are performed or the PAU determines to apply the activation early.

Weight and index buffers. The weight buffer contains the weight

values of the convolution kernels in the pre-determined order

(See Section IV). The weights are ordered offline and loaded

into the memory with the proper ordering. Since the ordering of

the weights are changed, we also need to add an index buffer to

properly index the input buffer. This index is used to load a value

from the index buffer. In every cycle, the controller fetches one

weight from the weight buffer and broadcasts it to all the compute

lanes. Simultaneously, the controller reads an index and sends it to

the input buffer to read the corresponding input value. The input

buffer delivers the inputs to each compute lane to perform one

multiplication for adjacent convolution windows.

Input/Output Buffers. The input buffer holds a portion of input

data for each convolution layer. Upon completion of all the

computations, the results are written into the output buffer. We use

one physical buffer for inputs and outputs. However, the buffer

is logically divided into two sub-buffers for holding the input and

output data of each layer. The logical partitioning allows us to use

each of the sub-buffers as an input or an output buffer. The results

of a layer l stored in the output buffer may be used by the next

layer l+1 in . In this case, the data of each sub-buffers are logically

swapped without wasting additional cycles for data transfers.

Predictive Activation Unit (PAU). Figure 7 illustrates the

microarchitecture of the Predictive Activation Unit (PAU). One

PAU unit is added to each compute lane to support the convolution

operations in the exact and predictive mode. Performing the

convolution operations in the exact mode only requires to check

the sign of the partial sum value during the MAC operations with

the negative weights. Accordingly, in the exact mode, the signal

Predict is set to zero which allows the sign-bit of the partial sum

stored in the register Acc Reg to determine the termination of the

convolution operations. Once the sign-bit becomes one, the signal

terminate is asserted and notifies the controller to terminate the rest

of computations for the underlying convolution window.

In the predictive mode, the sign of the convolution output is

speculated through the threshold value (th) and its associated num-

ber of operations (n) which are statically determined through the

software part (See Algorithm 1). To perform speculation, PAU first

checks the partial sum value, coming from the accumulator register,

with a threshold value after a pre-determined number of MAC

operations. At this time, the controller sets the signal Predict to one.

If the partial sum value is less than the pre-determined threshold

value, PAU predicts that the final value of this convolution window

will eventually become negative. In this case, the PAU performs

the following tasks: (1) notifies the controller that no further

computations are required for this convolution window and (2)

performs the early ReLU activation and sends zero to the output

buffer. If the partial sum value is larger than the pre-determined

threshold, the compute lane continues the computations for the

convolution window normally until it reaches the negative weights.

The next check on the partial sum starts upon starting the MAC

operations with the negative weights. Here, the signal Predict is

de-asserted, and PAU periodically performs a simple one-bit sign

check on the partial sum values after each MAC operations, similar

to the process mentioned in the exact mode. Once the sign-bit

becomes one, the PAU terminates the convolution operations of

the current window and sends a zero value to the output.

The mechanism of dynamically checking the partial sum values

might lead to idle computation lanes. These computation lanes

remain idle until the rest of the lanes finish the computations of

their assigned convolution window. Accordingly, increasing the

computation lanes may result in making more lanes idle despite

providing higher parallelism between the convolution windows.

In Section VI, we evaluate the effect of increasing computation

lanes on the idle cycles and their effects on the performance and

energy savings.

Pooling unit. Once the computations of a group of convolution

windows complete, the PE performs the pooling operation on the

results. Once done, the PE writes the results back into the output

buffer. These results are either used in the computations of the

next layers of CNNs or written back to the off-chip memory, if

no further computations is required.

Organization of PEs. As shown in Figure 12, the SnaPEA archi-

668

�
�
�

��

��

�
��
��
�	 �

�������	�

�����	�
���
���

��	��	

��

��

�������	

�

�

�

�

Figure 7: Prediction Activation Unit (PAU). The Predict signal determines the
PAU operation mode (exact or predictive). The Terminate signal, once asserted,
terminates the computation early.

tecture contains multiple identical PEs organized in a 2D array.

The PEs are logically grouped both vertically and horizontally. The

input data are partitioned between the horizontal PEs and the ker-

nels are partitioned between the vertical PEs. The PEs in the same

horizontal and vertical groups work on the same portion of the in-

put data and kernels, respectively. Before the computation starts, a

portion of input data are broadcasted to all the PEs within the same

horizontal group. Similarly, one or more kernels are broadcasted to

the PEs within the same vertical group. After the input and kernel

data distribution, the PEs start and proceed their computations

independent from other PEs. Once the computations for all the

PEs within the same horizontal group end, the on-chip buffer

delivers the next portion of input data. In this partitioning, some of

the PEs may finish their computations earlier than other PEs within

the same horizontal group. These PEs remain idle until all the other

PEs complete their computations for all the assigned kernels and in-

put data portion. This synchronization mechanism reduces the cost

of multiple data broadcasting among the PEs while having a small

impact on the performance. We evaluate the impact of this synchro-

nization mechanism in Section VI-B by analyzing the sensitivity

of performance to the number of compute lanes per each PE.

VI. EVALUATION

A. Methodology

Workloads. We use several popular medium to large scale dense

CNN workloads. We also include SqueezeNet [6] that maintains

AlexNet-level accuracy with 50× fewer parameters through a

static pruning approach. The fewer parameters in SqueezeNet
are attained using an iterative pruning and re-training of the

convolution weights. Table I summarizes the evaluated networks

and some of the most pertinent parameters such as model size,

number of convolution layers (Conv.), number of fully-connected

layers (FC), and the baseline classification accuracy. In all of the

evaluations, we use ILSVRC-2012 [1] validation dataset.

System setup. We use Caffe v1.0 [11] to run the pre-trained

networks on a GPU. We compile Caffe using NVCC v8.0.62 and

GCC v4.8.4 with maximum architecture-specific and compiler

optimizations enabled. We configure Caffe to use Nvidia cuDNN

v6.0, a highly tuned GPU-accelerated deep neural network library.

Training/testing datasets. To learn the threshold values and

their associated set of operations for each kernel, we implement

Algorithm 1 through updating the data of convolutional layers in

Caffe v1.0. We uniformly sample a subset of images from each of

the 1,000 classes in ImageNet [1] to obtain the training and testing

datasets for the proposed algorithm. The uniform sampling among

Table I: Workloads, their released year, model size, number of convolution
(Conv.) and fully-connected (FC) layers, and baseline classification accuracy.
The model size shows the size of weights in Megabytes.

Network Year
Model Size

(MB)

AlexNet

GoogLeNet

SqueezeNet

VGGNet

2012
2015
2016
2014

224
54
6

554

of Layers
Conv. FC

Classification
Accuracy

5
57
26
13

3
1
1
3

72.6%
84.4%
74.1%
83.0%

Table II: SnaPEA and EYERISS [2] design parameters and area breakdown.

P
E

Compute Lanes / PE
Partial Sum Register
Input Register
Weight Buffer
Index Buffer
Input / Output RAM
Predictive Activation Units

A
cc

l. Number of PEs
Global Buffer

SnaPEA EYERISS

Size Area (mm2) Size Area (mm2)

4 0.012 1 0.003
N/A 0 48 B 0.002
N/A 0 24 B 0.001

0.5 KB 0.014 0.5 KB 0.014
0.5 KB 0.007 N/A 0
20 KB 0.250 N/A 0

4 0.008 N/A 0
64 18.62 256 4.94

N/A 0 1.25 MB 12.9
Total Area 18.6 mm2 17.8 mm2

all the classes enables us to cover images from distinct classes

during the training and testing phases of Algorithm 1.

Architecture design and synthesis. We implement the

microarchitectural units of the proposed architecture including the

controllers, PEs, predictive activation unit (PAU), and registers

in Verilog. We use Synopsys Design Compiler (L-2016.03-SP5) and

a TSMC 45-nm standard-cell library to synthesize the proposed

architecture and obtain the area, delay, and energy numbers of the

logic hardware units.

SnaPEA and baseline architecture configurations. In this

paper, we explore an 8×8 array of PEs in SnaPEA, each with

four compute lanes, with a total of 256 MAC units. However, the

SnaPEA architecture can be scaled up to larger numbers of PEs.

Table II lists the major architectural parameters of the SnaPEA

design. We add a weight buffer and an index buffer, each 0.5 KB

per each PE. Both weight and index buffers are shared across all

the compute lanes within each PE. Each PE is also equipped with

a 20 KB buffer, that is evenly divided between input and output.

The total capacity of the buffers therefore is 1.25 MB. Similar to the

weight and index buffers, both input and output buffers are shared

across all the compute lanes within a PE. Sharing the on-chip

memories across multiple PEs enables us to reduce the overhead

of index buffers. We size the input and output buffer so that the

activations of all the CNN models, except VGGNet, fit within

these on-chip buffer. This sizing eliminates the need of draining

and filling the on-chip buffers during the execution. For VGGNet,
which has deeper and larger layers, however, SnaPEA has to spill

the activations to memory during the accelerations. We consider

the overhead of spilling the data to the off-chip memory in our

experiments. For the baseline architecture, we use the EYERISS [2]

accelerator. Table II shows the major architectural components for

EYERISS. To have the same peak throughput in both accelerators,

we configure EYERISS to have the same number of MAC units

669

Table III: Absolute and relative energy comparison for different components
of SnaPEA architecture along with off-chip memory access energy cost. PE
energy includes the cost of Predictive Activation Unit (PAU).

Operation Energy (pJ/Bit) Relative Cost

Register File Access
16-bit Fixed Point PE
Inter-PE Communication
Global Buffer Access
DDR4 Memory Access

0.20
0.30
0.40
1.20

15.00

1.0
1.5
2.0
6.0

75.0

AlexNet

GoogLeNet

SqueezeNet

VGGNet

Geomean
1.00×

1.10×

1.20×

1.30×

1.40×

S
pe

ed
up

(a)

AlexNet

GoogLeNet

SqueezeNet

VGGNet

Geomean
1.00×

1.05×

1.10×

1.15×

1.20×

E
ne

rg
y

R
ed

uc
tio

n

(b)

Figure 8: Overall (a) speedup and (b) energy reduction with exact mode.

(256) as ours. In addition, we allocate the same on-chip memory

size (1.25 MB) to both accelerators. The frequency of both

accelerators are fixed to 500 MHz. Table II summarizes the area of

the major microarchitectural components in SnaPEA and EYERISS.

Overall, the SnaPEA accelerator needs≈4.5%more area compared

to the EYERISS architecture with the specified configurations

(Table II). This increase in the area is mainly attributed to the added

predictive activation units (PAUs) in the PEs and the controllers.

Energy measurements. Table III lists the energy consumption

of SnaPEA microarchitectural units. For hardware units, we use

the synthesis results with TSMC 45-nm and reported numbers in

TETRIS [8], which uses the same technology node and has a similar

PE architecture as EYERISS. We include the energy overhead of

the predictive activation unit in the energy cost of PE (second row

in Table III). However, for the baseline architecture (EYERISS),

we exclude the energy consumption of the predictive activation

unit and use a relative cost of 1.0 in the evaluations. We use the

publicly available Micron’s DDR4 system power calculator [12]

to estimate the energy cost of accesses to the off-chip memory.

Cycle-level microarchitecture simulation. We develop a

cycle-level microarchitectural simulator that closely model the

architecture of EYERISS and SnaPEA hardware to measure the

performance and energy savings of both hardware. We integrate

the microarchitectural components explained in Section V into the

simulator in a cycle-level manner. To measure the energy savings,

we use the synthesis results and the reported energy numbers

AlexNet

GoogLeNet

SqueezeNet

VGGNet

Geomean
0.00×
0.50×
1.00×
1.50×
2.00×
2.50×

S
pe

ed
up

(a)

AlexNet

GoogLeNet

SqueezeNet

VGGNet

Geomean
0.00×

0.50×

1.00×

1.50×

2.00×

E
ne

rg
y

R
ed

uc
tio

n

(b)

Figure 9: Overall (a) speedup and (b) energy reduction with SnaPEA over
EYERISS [2] in the predictive mode. The acceptable classification accuracy
drop is maintained within ≤3% range of its baseline value.

from some of the recent works [2], [8], [13]. Furthermore, we

use CACTI-P [14] to calculate the area and power of the register

files and on-chip buffers. In the case of any inconsistency in

terms of technology node, we properly scaled the area, delay,

and energy numbers to make them consistent with our synthesis

flow. We integrate the delay and energy numbers collected from

the aforementioned sources into our cycle-level simulator. The

simulator takes the configuration of a CNN architecture as input

and generates an event log for each hardware component. Finally,

using the generated event log along the integrated delay and

energy numbers, the simulator reports the number of cycles and

energy numbers for the whole network.

B. Experimental Results

Overall benefits in the exact mode. Figure 8 illustrates the

speedup and energy reductions when the predictive activation is

disabled (i.e. exact mode). In this approach, SnaPEA hardware

only applies the early activation when the value of partial sum

drops below zero (See Section V). As there is no prediction,

the CNN classification accuracy will not be deteriorated. In

this setting, SnaPEA, on average, delivers 1.3× speedup and

1.16× energy reductions over EYERISS, respectively. Even

for SqueezeNet [6]—a statically pruned convolutional neural

network—SnaPEA yields 1.3× and 1.14×. These savings for

SqueezeNet show that static pruning techniques are complimentary

to the dynamic approach of SnaPEA. Overall, the results in the

exact mode show the practicality of SnaPEA in delivering speedup

and energy reductions even in the pure exact mode, in which the

CNN classification accuracy remains untampered (Table I).

Overall benefits in predictive mode. Figure 9a illustrates the

overall performance improvement of SnaPEA over EYERISS in

the predictive mode while maintaining the classification accuracy

within 3% range of its baseline value (See Table I). In this configura-

670

AlexNet

GoogLeNet

SqueezeNet
VGGNet

1.00�

1.50�

2.00�

2.50�

3.00�

3.50�
Sp

ee
du

p

conv4

conv3

inception_4e/5x5_reduce

inception_4e/1x1

fire5/squeeze1x1

fire6/expand3x3

conv4_2

conv5_3

Figure 10: Speedup of convolutional layers in each network for the predictive
mode when the degradation in classification accuracy is set to ≤ 3%.

tion, the predictive activation units (PAUs) might mis-predict a pos-

itive activation value as negative, hence degrading the classification

accuracy. The injected error in the convolutional layers may lead

to a drop in the final classification accuracy. The highest speedup

(2.08×) is observed in GoogLeNet, in which a large fraction of the

features are negative, and hence the saving is larger.

Figure 9b illustrates the energy reduction with SnaPEA in

predictive mode over EYERISS [2]. Similar to the simulation

settings for speedup, the degradation in classification accuracy

is maintained within 3%. Among all the CNN models,

GoogLeNet enjoys the highest energy reductions (1.63×).

Also, in SqueezeNet [6], a statically pruned CNN model, our

technique yields 1.80× and 1.42× speedup and energy reductions,

respectively. This result endorses the effectiveness of SnaPEA,

even compared to static pruning techniques [6], in exploiting the

runtime information to provide significant savings.

Figure 10 illustrates the speedup of convolutional layers

in different networks when accuracy drop is set to 3%. The

maximum range of speedup is observed in GoogLeNet, in which

the maximum speedup is 3.59× achieved by convolution layer

inception 4e/1x1, and the minimum speedup is 17% achieved by

the layer inception 4e/5x5 reduce.

Moreover, in the predictive mode, to achieve acceptable

accuracy drop, a fraction of the convolutional layers can operate

in the predictive mode, which are specified by the software part.

Table IV summarizes the percentage of convolutional layers that

operate in the predictive mode in each network when the accuracy

drop is set to 3%. The average speedup and energy saving across

those layers are also brought in the table. The results show that,

on average, 67.8% of the convolutional layers operate in the

predictive mode, and the average speedup and energy saving

across these layers are 2.02× and 1.89×, respectively.

Prediction accuracy. We study how effective the predictive mode

is in predicting the negative values. Table V shows the average

true negative and false negative rate across all the convolutional

layers in the studied CNN models. The true negative rate measures

the proportion of negative values that are correctly identified as

negative. Applying early activation on these values does not have

any effect on final classification accuracy. The false negative

rate measures the proportion of the positive values that are

mis-predicted as negative and squashed to zero; hence, might lead

to degradation in the final classification accuracy. On average, the

Table IV: The percentage of convolution layers that operates in the predictive
mode, when classification accuracy drop is set to ≤3%. The second and third
column illustrates the average speedup and energy reduction across these
convolution layers.

Network

AlexNet
GoogLeNet
SqueezeNet
VGGNet

% of Convolution
Layers

Average Speedup

60.0%
84.21%
65.38%
61.50%

2.11�
2.17�
1.94�
1.87�

Average Energy
Reduction

1.97�
2.04�
1.84�
1.73�

Table V: True negative and false negative rate in predictive mode when
classification accuracy drop is set to ≤ 3%.

Network True Negative Rate False Negative Rate

AlexNet
GoogLeNet
SqueezeNet
VGGNet

61.84%
66.36%
49.32%
47.54%

21.39%
28.37%
16.69%
15.21%

true (false) negative rate of our proposed prediction mechanism

is 56.26% (20.41%). Due to our optimization technique (See

Algorithm 1), on average, more than 86% of the error occurs

on the small positive values. The small positive values in the

activations generally have slight effect on the final classification

accuracy. The main reason for this is attributed to the fact that each

convolutional layer is commonly accompanied by a max-pooling

layer, in which the small values are filtered out. The high true

negative rate enables us to apply the activation on the negative

values early and significantly reduce the ineffectual operations.

Furthermore, the high true negative rate along the modest false

negative rate exhibits the capability of SnaPEA in utilizing

the runtime information to predict the negative values while

meticulously injecting errors mainly on small positive values.

Sensitivity to the degree of speculation. To study the effect of

our proposed predictive early activation technique, Figure 11

illustrates the speedup with SnaPEA over EYERISS [2] when

the classification accuracy loss varies from 0% to 3%. The 0%

classification accuracy loss is when we do not use any prediction

mechanism (exact mode). The remaining classification accuracy

loss levels (e.g., 1.0%, 2.0%, 3.0%) is when we use the predictive

early activation mechanism (predictive mode). In fact, supporting

distinct levels of loss in the classification accuracy is one of the con-

tributions of our work. The proposed predictive early activations

technique exposes a knob for the user to gracefully navigate the

trade-offs between CNN classification accuracy and performance

and efficiency gains. On average, SnaPEA delivers 1.28×, 1.38×,

1.63×, and 1.9× speedup when we relax the constraint on the

acceptable degradation of classification accuracy to 0.0%, 1.0%,

2.0%, and 3.0%, respectively. As we increase the acceptable

degradation in the classification accuracy all the evaluated CNNs

enjoy a boost in the speedup and energy reductions.

Sensitivity to the number of compute lanes. Figure 12 illustrates

the impact of varying the number of compute lanes within each

PE on speedup with SnaPEA over EYERISS. We present the

results for the predictive mode when the maximum loss in the

CNN classification accuracy is set to 3%. The second bar (Default)
shows the speedup in the baseline SnaPEA system (i.e., four

671

AlexNet GoogLeNetSqueezeNet VGGNet Geomean0.0×

0.5×

1.0×

1.5×

2.0×
S

pe
ed

up

Quality Loss = 0.0%
Quality Loss = 1.0%

Quality Loss = 2.0%
Quality Loss = 3.0%

Figure 11: Speedup vs. loss in the CNN classification accuracy. Each bar
indicates the speedup when the acceptable degradation in the classification
accuracy is 0% (pure exact mode), 1% (predictive mode), 2.0% (predictive
mode), and 3.0% (predictive mode), respectively.

AlexNet GoogLeNetSqueezeNet VGGNet Geomean0.0×

0.5×

1.0×

1.5×

2.0×

S
pe

ed
up

PEs / Lane = 0.5×
PEs / Lane = Default

PEs / Lane = 2× more
PEs / Lane = 4× more

Figure 12: Sensitivity of speedup with SnaPEA over EYERISS to the number
of compute lanes per each PEs. Each bar indicates the speedup when
the number of compute lanes per each PEs is altered by different factors
(acceptable classification accuracy drop ≤3%).

compute lanes) over EYERISS with the same number of compute

elements. The rest of the bars (first, third, and fourth bar) show the

speedup of SnaPEA when the number of compute lanes per each

PE is altered uniformly across all the PEs by a factor of half, two,

and four, respectively. Increasing the number of compute lanes

potentially increases the parallelization level between different

convolutional windows. However, due to the synchronization

overhead between the compute lanes per each PE (See Section V,

Organization of PEs), the improvements diminish. The results

show that increasing the number of lanes two times and four

times hurts the performance by ≈36% and ≈45%, respectively.

Also, if we reduce the number of lanes by 0.5×, the performance

decreases by ≈26%. The reason for this behavior is mostly

because of an uneven amount of computations performed by each

compute lane. In contrast to EYERISS [2], in SnaPEA the number

of operations in each convolution window varies due to its runtime

early activation. Therefore, increasing the number of arithmetic

units reduces the utilization of the compute lanes and diminishes

the benefit of higher parallelization.

VII. RELATED WORK

SnaPEA is fundamentally different from the prior studies in

three major ways: (1) we exploit the inherent algorithmic structure

of CNNs and runtime information to judiciously perform early

activation and save ineffectual computations , (2) we expose a knob

that enables the user to gracefully navigate the trade-offs between

the classification accuracy, performance, and energy efficiency ,

and (3) we study the rich and unexplored area of task skipping

in the domain of deep convolutional neural networks and conjoin

these two disjoint lines of research in SnaPEA. Below, we discuss

the most related works.

CNN accelerators. Several accelerators for convolutional neural

networks has been proposed [2], [7]–[10], [15]–[23]. In some

of the most recent works [2], [20], [23], 2D spatial architectures

have been proposed to match with the convolution dataflow and

maximize the data reuse. TETRIS [8] and Neurocube [15] have al-

most the same compute engines as the previous CNN accelerators.

However, these works studied the challenges and opportunities

for designing efficient CNN accelerators in a 3D-stacked memory

setting. Neither of these accelerators evaluated the benefits of

performing early activation in the convolution operation.

Pruning techniques. A handful of research [4], [6], [24]–[26]

proposed various static pruning techniques to reduce the overhead

of computation in deep convolutional neural networks. These static

pruning techniques are agnostic to the dynamically-generated zeros

whose locations in the activation layer vary from one image to

another. As our results show, SnaPEA is complementary to these

techniques and further improve the benefits over the static pruning

techniques. Furthermore, several architectures also have been pro-

posed [7], [9], [17]–[19] for exploiting the sparsity in the input acti-

vations and/or weights to improve the efficiency of the accelerator.

In one of the most recent work, SCNN [7] designs an accelerator

that exploits the sparsity in both the activations and weights. The

proposed novel dataflow in SCNN maximizes the data reuse in

the sparse activations and weights. This work is orthogonal to the

previous efforts that focused on exploiting the sparsity in CNN ac-

celerators. SnaPEA takes on a distinct approach than prior designs

by judiciously re-ordering the MAC operations in a sliding window

and performing the early activation in convolutional windows.

Task skipping. A handful of research efforts [27]–[34] have

looked into task skipping in various domains. In one of the most

recent efforts [29], Sidiroglou et al. proposed loop perforation in

which the accuracy is traded in return for improvement in perfor-

mance. In their proposal, they algorithmically transform the critical

loops in the program and only execute a subset of their iterations.

PredictiveNet [34] proposes a skipping mechanism for CNNs.

They first perform the computations on the most-significant bits

and then speculatively decide whether to perform the computation

on the least-significant bits. However, SnaPEA completely skips

the computations of the significant fraction of the operations. As

such, SnaPEA not only reduces the computation cost, but also

reduces the number of accesses to the on-chip buffers. Although

SnaPEA takes inspiration from the prior proposals in task skipping,

it uniquely applies the task skipping mechanism in the domain

of deep convolutional neural networks in order to effectively

eliminate the ineffectual data transfers and computations.

VIII. CONCLUSION

Traditionally, layers of deep neural networks have been thought

to work in separation while handing each other their results. How-

ever, our work took a disparate approach in considering the most

common sequence of layers in emerging deep networks to reduce

the amount of computation. As such, SnaPEA has devised a pre-

672

dictive early activation that operates in two distinct modes, namely

exact and predictive mode. In the exact mode, in which the nominal

classification accuracy remains untampered, SnaPEA uses a com-

bination of static re-ordering of the weights and low-overhead sign

check to determine when to terminate the computation. SnaPEA

further improves the performance and efficiency of convolution

operations in the predictive mode by speculatively cutting the com-

putation of convolution operations if it predicts its output is nega-

tive, immediately applying activation. Compared to a recent CNN

accelerator, SnaPEA in the exact mode yields 28% speedup (max-

imum of 74%) and 16% (maximum of 51%) energy reductions

across various modern CNNs without affecting their classification

accuracy. With 3% loss in classification accuracy, on average,

67.8% of the convolutional layers operate in the predictive mode,

and the average speedup and energy saving across these layers are

2.02× and 1.89×, respectively. The significant gains due to the

computation and memory access reduction across several modern

CNNs show the effectiveness of our approach that conjoins runtime

information and algorithmic insights into a unified accelerator.

IX. ACKNOWLEDGMENTS

We thank our shepherd, Philip Stanley-Marbell, and the

member of Alternative Computing Technologies (ACT) Lab,

Michael Brzozowski, Jake Sacks, Hardik Sharma, Divya Mahajan,

and Jongse Park for insightful comments and discussions. Amir

Yazdanbakhsh was partly supported by a Microsoft Research

PhD Fellowship. This work was in part supported by NSF awards

CNS#1703812, ECCS#1609823, CCF#1553192, CCF#1029783,

Air Force Office of Scientific Research (AFOSR) Young

Investigator Program (YIP) award #FA9550-17-1-0274, and gifts

from Google, Microsoft, and Qualcomm.

REFERENCES

[1] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet
Large Scale Visual Recognition Challenge,” IJCV, 2015.

[2] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Architecture for
Energy-Efficient Dataflow for Convolutional Neural Networks,” in ISCA,
2016.

[3] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao, A. Mishra,
and H. Esmaeilzadeh, “From High-Level Deep Neural Models to FPGAs,”
in MICRO, 2016.

[4] S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compressing Deep
Neural Networks with Pruning, Trained Quantization, and Huffman Coding,”
in ICLR, 2016.

[5] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going Deeper with Convolutions,” in
CVPR, 2015.

[6] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and
K. Keutzer, “SqueezeNet: AlexNet-level Accuracy with 50x Fewer Param-
eters and¡0.5 MB Model Size,” arXiv preprint arXiv:1602.07360, 2016.

[7] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany,
J. Emer, S. W. Keckler, and W. J. Dally, “SCNN: An Accelerator for
Compressed-sparse Convolutional Neural Networks,” in ISCA, 2017.

[8] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “TETRIS: Scalable
and Efficient Neural Network Acceleration with 3D Memory,” in ASPLOS,
2017.

[9] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-Neuron-Free Deep Neural Network
Computing,” in ISCA, 2016.

[10] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“DianNao: A Small-footprint High-throughput Accelerator for Ubiquitous
Machine-learning,” in ASPLOS, 2014.

[11] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional Architecture for Fast
Feature Embedding,” arXiv preprint arXiv:1408.5093, 2014.

[12] “DDR4 Spec - Micron Technology, Inc.” https://goo.gl/9Xo51F.
[13] S. Galal, Energy Efficient Floating-Point Unit Design. PhD thesis, The

Department of Electrical Engineering of Stanford University, 2012.
[14] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi, “CACTI-P:

Architecture-level Modeling for SRAM-based Structures with Advanced
Leakage Reduction Techniques,” in ICCAD, 2011.

[15] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay,
“NeuroCube: A Programmable Digital Neuromorphic Architecture with
High-Density 3D Memory,” in ISCA, 2016.

[16] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos,
“Stripes: Bit-serial Deep Neural Network Computing,” in MICRO, 2016.

[17] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee,
J. M. Hernndez-Lobato, G. Y. Wei, and D. Brooks, “Minerva: Enabling
Low-Power, Highly-Accurate Deep Neural Network Accelerators,” in ISCA,
2016.

[18] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and
Y. Chen, “Cambricon-X: An Accelerator for Sparse Neural Networks,” in
MICRO, 2016.

[19] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally,
“EIE: Efficient Inference Engine on Compressed Deep Neural Network,”
in ISCA, 2016.

[20] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen, and
O. Temam, “ShiDianNao: Shifting Vision Processing Closer to the Sensor,”
in ISCA, 2015.

[21] D. Liu, T. Chen, S. Liu, J. Zhou, S. Zhou, O. Teman, X. Feng, X. Zhou,
and Y. Chen, “PuDianNao: A Polyvalent Machine Learning Accelerator,”
in ASPLOS, 2015.

[22] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
FPGA-based Accelerator Design for Deep Convolutional Neural Networks,”
in FPGA, 2015.

[23] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and Y. LeCun,
“NeuFlow: A Runtime Reconfigurable Dataflow Processor for Vision,” in
CVPR Workshops, 2011.

[24] H. Mao, S. Han, J. Pool, W. Li, X. Liu, Y. Wang, and W. J. Dally, “Exploring
the Regularity of Sparse Structure in Convolutional Neural Networks,”
CoRR, 2017.

[25] H. Alemdar, V. Leroy, A. Prost-Boucle, and F. Pétrot, “Ternary Neural
Networks for Resource-efficient AI Applications,” in IJCNN, 2017.

[26] Y. He, X. Zhang, and J. Sun, “Channel Pruning for Accelerating Very Deep
Neural Networks,” arXiv preprint arXiv:1707.06168, 2017.

[27] A. Yazdanbakhsh, G. Pekhimenko, B. Thwaites, H. Esmaeilzadeh, O. Mutlu,
and T. C. Mowry, “RFVP: Rollback-Free Value Prediction with Safe to
Approximate Loads,” in TACO, 2015.

[28] S. Misailovic, D. M. Roy, and M. C. Rinard, “Probabilistically Accurate
Program Transformations,” in SAS, 2011.

[29] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard,
“Managing Performance vs. Accuracy Trade-offs with Loop Perforation,”
in FSE, 2011.

[30] S. Misailovic, S. Sidiroglou, H. Hoffman, and M. Rinard, “Quality of
Service Profiling,” in ICSE, 2010.

[31] H. Hoffmann, S. Misailovic, S. Sidiroglou, A. Agarwal, and M. Rinard, “Us-
ing Code Perforation to Improve Performance, Reduce Energy Consumption,
and Respond to Failures,” Tech. Rep. MIT-CSAIL-TR-2009-042, MIT, 2009.

[32] M. C. Rinard, “Using Early Phase Termination to Eliminate Load Imbalances
at Barrier Synchronization Points,” in OOPSLA, 2007.

[33] M. Rinard, “Probabilistic Accuracy Bounds for Fault-tolerant Computations
that Discard Tasks,” in ICS, 2006.

[34] Y. Lin, C. Sakr, Y. Kim, and N. Shanbhag, “PredictiveNet: An
Energy-efficient Convolutional Neural Network via Zero Prediction,” in
ISCAS, 2017.

673

