
Serving Deep Neural Networks at the Cloud Edge for
Vision Applications on Mobile Platforms

Zhou Fang, Dezhi Hong, Rajesh K. Gupta
Computer Science and Engineering, University of California, San Diego

ABSTRACT
The proliferation of high resolution cameras on embedded
devices along with the growing maturity of deep neural
networks (DNNs) has spawned powerful mobile vision appli-
cations. To enable applications on mobile devices, the offload-
ing approach processes live video streams using DNNs on
server-class GPU accelerators. However, their use in latency
constrained applications is particularly challenging because
of the large and unpredictable round-trip latency frommobile
devices to the cloud computing resources. As a consequence,
system designers routinely look for ways to offload to local
servers at the cloud edge, known as the cloudlet. This paper
explores the potential of serving multiple DNNs using the
cloudlet model to implement complex vision applications
on mobile devices. We present DeepQuery, a new mobile of-
floading system that is capable to serve DNNs with different
structures for a wide range of tasks including object detection
and tracking, scene graph detection, and video description.
DeepQuery provides application programming interfaces to
offload applications programed as Directed Acyclic Graphs
of DNN queries, and employs data parallelization and input
batching techniques to reduce processing delays. To improve
GPU utilization, it co-locates real-time and delay-tolerant
tasks on shared GPUs, and exploits a predictive and plan-
ahead approach to alleviate resource contention caused by
co-locating. We evaluate DeepQuery and demonstrate its
effectiveness using several real world applications.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mo-
bile computing; • Computer systems organization →
Cloud computing; Client-server architectures;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
MMSys ’19, June 18–21, 2019, Amherst, MA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6297-9/19/06. . . $15.00
https://doi.org/10.1145/3304109.3306221

KEYWORDS
mobile computing, cloud computing, edge computing, com-
puter vision, deep neural networks
ACM Reference Format:
Zhou Fang, Dezhi Hong, Rajesh K. Gupta. 2019. Serving Deep Neu-
ral Networks at the Cloud Edge for Vision Applications on Mobile
Platforms. In Proceedings of 10th ACM Multimedia Systems Confer-
ence, Amherst, MA, USA, June 18–21, 2019 (MMSys ’19), 12 pages.
https://doi.org/10.1145/3304109.3306221

1 INTRODUCTION
High resolution cameras are becoming the norm on mobile
platforms such as smartphones, Google glasses [6], AWS
DeepLens [5], etc. This enables a wide variety of vision ap-
plications that can extract contextual information from live
video streams. For examples, intelligent personal assistants
on smartphones answer queries in the form of voice and vi-
sion information to assist users [23]. Cognitive assistants on
wearable glasses can also provide the environmental infor-
mation to guide people with visual impairment [16]. Comple-
menting these advances in hardware and platforms is the ma-
turity of deep neural networks (DNNs) that are now widely
adopted in computer vision applications. By quantitative
measures, DNNs have achieved the state-of-the-art perfor-
mance for the canonical classes of vision tasks at the object
level (e.g., recognition, detection, and tracking) [10, 25, 53].
We also start to see progress in tasks at higher semantic lev-
els, such as human activity understanding [26], scene graph
detection (object relationships) [33, 47], and video descrip-
tion [48]. The progresses in platforms and algorithms are at
the threshold of a greatly enhanced ability of machines to
understand video content to create intelligent applications.

To enable more accessible DNN models on mobile devices,
many methods have been explored to attain low-power and
real-time model inference, e.g., designing lightweight mod-
els [28, 30, 45], pruning and quantizing models [17, 19, 46],
and using hardware accelerators [8, 38, 50]. As an alterna-
tive to on-board computing, the mobile offloading approach
augments embedded devices with resource-rich servers [11,
16, 18, 32] that are equipped with GPU [13, 22], FPGA [15],
and/or ASIC [31] accelerators. These servers can be deployed
either in local clusters, envisioned as cloudlet [41], or in the
cloud [1–3]. Offloading DNN inference tasks to servers ben-
efits from multiple computing resources in parallel, which is
infeasible for on-board mobile computing.

https://doi.org/10.1145/3304109.3306221
https://doi.org/10.1145/3304109.3306221


MMSys ’19, June 18–21, 2019, Amherst, MA, USA Zhou Fang, Dezhi Hong, Rajesh K. Gupta

We envision emerging mobile video analytics applications
that would employ multiple DNN models to accurately ex-
tract a rich class of information. For example, a vision-based
smart hospitals [21] follows such a flow and deploys several
DNNs for pedestrian detection and tracking as well as ac-
tivity classification. The performance of video description
can be boosted by combining 2D and 3D CNN features, and
hand-crafted features from raw video streams and optical
flows [49]. In doing so, the application involves several fea-
ture extraction models. In this paper, we motivate our work
by the application in Figure 1 as an example — it extracts
visual information at different semantic levels, including ob-
ject, scene graph, and video description in natural language
— which can be used to guide users or answer questions in
cognitive assistant applications.
These applications would contain real-time (RT) work-

loads, such as object tracking in a live video [11], as well
as non-RT delay-tolerant tasks such as describing a video
clip [48]. Particularly, cognitive tasks would have stringent
timing requirements and usually target at sub-second end-to-
end delays to provide similar experiences to tasks conducted
by humans [16]. For example, a previous study shows that
on average it takes a human 370ms to recognize familiar
faces and 620ms to recognize unfamiliar ones [39]. As a re-
sult, we would need a system that is capable of scheduling
workloads with different timing requirements. A local clus-
ter, i.e., the cloudlet [41], holds promise for these RT work-
loads by providing timely offloading through low-latency
high-bandwidth WiFi networks [11, 16]. It can reduce the
network delays by hundreds of milliseconds compared to
using remote cloud servers [12]. In addition, it avoids stream-
ing large amounts of data over public networks to the cloud
by aggregating and processing data on the edge servers [52].

To this end, we present DeepQuery, a new mobile offload-
ing system that serves DNNs for live video analytics ap-
plications deployed on local servers at the network edge.
DeepQuery provides new capabilities to simplify applica-
tion deployment, reduce processing delay, and improve GPU
resource utilization, through the following means:
Programming APIs: To support complex applications com-
prised of several tasks, DeepQuery provides a set of APIs to
manage mobile data as key-value pairs on the servers, and
employs queries to process data using DNNs. An application
can thus be implemented as a Directed Acyclic Graph (DAG)
of queries. In our design, intermediate data and applications
states can be cached on servers to avoid redundant data trans-
fer. For example, in Figure 1, object tracking and scene graph
detecting tasks depend on the output of object detection. The
DAG of queries contains such data dependency information,
and the system automatically caches the detection output
on servers for subsequent queries.

... ...

......
Object Tracking

Fuse tracked and newly 
detected objects

Object 
Detection

Object 
Detection

Object Tracking and Detecting

Video Stream

human

object proposals

Scene 
Graph

Scene Graph Detection

horse

riding

Video Clip

conv
layers LSTMs

A woman is
riding on
a horse.

Video Description

Figure 1: An application that retrieves visual infor-
mation at different semantic levels (objects, scene
graph, video description) using DNNs, from a live
video stream. Our system provides APIs to program
such complex applications, with infrastructure sup-
port to optimize DNN inference and scheduling meth-
ods to co-locate real-time (RT) and non-RT tasks on
shared GPUs for high resource utilization.

Low-latencyDNN Inference:DeepQuery accelerates DNN
inference by providing the infrastructure for data paralleliza-
tion. Consider, for instance, the Faster Region-based CNN
(FRCNN) [40], a popular object detection model. It can be
accelerated by classifying object proposals on multiple GPUs
in parallel. FRCNN using Inception ResNet V2 feature extrac-
tor is 1.7 times faster on 4 GPUs. The speedup is 2.2 times
faster for the more expensive FRCNN model using NasNet
feature extractor, tested on NVIDIA GTX 1080 Ti GPUs.
HighGPUUtilization:TheGPU resource in a local cloudlet
is limited compared to the cloud. It is thus valuable to co-
locate real-time (RT) and non-RTworkloads on shared servers
for a higher resource utilization. Accordingly, GPU resources
should be prioritized for RT workloads over non-RT work-
loads. Due to the lack of support for preemptivemulti-tasking
on GPUs, our proposed scheduler adopts a new predictive
approach: It predicts future RT queries using application in-
formation provided by the clients, including DNN processing
delays and network delays that are measured online. Dy-
namic batch size control is applied to non-RT workloads, in
order to finish their processing before any future RT queries
start to occupy the resource. Our scheduler also uses the
predicted future GPU load for other purposes, e.g., dynamic
batch size selection in data parallelization, as well as worker
selection for incoming queries for server load balance.
The primary contribution of this paper is the system de-

sign and implementation of DeepQuery. In addition tomobile
videos, our system works for a broader class of video sources,



Serving DNNs at Cloud Edge for Vision Applications on Mobile PlatformsMMSys ’19, June 18–21, 2019, Amherst, MA, USA

e.g., wired surveillance systems, in aspects of APIs, work-
load processing and scheduling, by handling network delays
differently (Section 5.1). Additionally, our comprehensive
evaluations include the characterization of several popular
DNN models for various vision tasks, the mechanisms for
offloading complex vision tasks efficiently, and the imple-
mentation of scheduling techniques to optimize co-located
RT and non-RT DNN workloads for a high GPU resource
utilization.

2 BACKGROUND AND RELATEDWORKS
Mobile Offloading Systems: Recent works on mobile of-
floading have achieved substantial progress in optimizing
end-to-end delay, mobile power consumption, and wireless
network bandwidth usage. Gabriel [16] enables time-critical
cognitive applications by deploying servers in a nearby cloudlet.
The network delays are therefore minimized, since the server
is only one wireless hop away from the mobile device. Rec-
ognizing the importance of DNN inferences on mobile plat-
forms, MCDNN [18] studies the problem of scheduling vari-
ants of DNNs for performance-resource trade-off in an of-
floading setting. Neurosurgeon [32] proposes to partition
DNN computations between the mobile and the cloud at the
granularity of neural network layer to optimize processing
delay and power consumption.
However, these systems only consider offloading tasks

individually and ignore the data dependency between tasks.
For complex vision applications consisting of multiple tasks
with data dependency, such a simple offloading mechanism
is inefficient due to the repetitive transfers of intermediate
data between the client and server. By contrast, we propose
fine grained data operations for mobile offloading — DNN
models and other algorithms are programed as queries on
data, which are highly flexible to program complex vision
applications.
Video Analytics Systems: Video analytics systems that
process a massive amount of queries on live video feeds in
the cloud have been adopted in many application scenarios,
e.g., surveillance systems in cities or organizations [29, 36, 51]
and smart hospitals [21]. Optasia [36] provides a set of SQL
style APIs to build vision analytics applications, and further
optimizes the queries to reduce the redundancy of computa-
tion. VideoStorm [51] programs an application as a DAG of
transformations on data, which are executed by processing
modules. The placement of processing modules and the con-
figuration knobs of transforms are decided dynamically at
runtime. VideoEdge [29] considers a hierarchy of resources
with diverse computing and network capabilities, e.g., cam-
era devices, private clusters, and public clusters. Query opti-
mization techniques are proposed to make trade-off between
resource and accuracy.

These frameworks, however, are not designed for support-
ing and optimizing DNN workloads running on GPUs. In

fact, these works consider stationary cameras for surveil-
lance purposes as the primary use case. Compared to mobile
cameras, many vision tasks can be simplified. For exam-
ple, detection and tracking of moving objects can use the
background subtraction method [14] running on processors.
However, such lightweight methods fall short of analyzing
videos from mobile cameras.
DNN Serving Systems: For a DNN model, inference is the
process of making predictions through a forward network
pass. A DNN serving system manages trained models and
processes queries using the models. The DjiNN project [22]
explores the idea of DNN-as-a-Service and designs a central-
ized DNN service infrastructure. It considers DNN models
for image, speech, and natural language processing (NLP)
applications. The system targets at warehouse-scale servers
with high processing throughput as the primary goal. Clip-
per [13] is a low-latency serving system. It considers delay,
throughput, and accuracy altogether, and adopts dynamic
batching and model selection techniques to improve the ser-
vice performance. These works consider object classification
as the primary vision workload, which is in contrast to our
envisioned scenario here: mobile vision applications piggy-
backed on local GPU servers using a variety of DNN models.
We extend previous works by investigating a richer set of
DNN models, and co-locating DNN inference tasks with dif-
ferent timing requirements on shared GPUs for a higher
utilization.

3 DNNWORKLOAD
We first characterize the DNN models used in the example
application (Figure 1) to motivate the design of DeepQuery.

3.1 Platform Specifications
The experiments to characterize the DNN models are con-
ducted on servers runningUbuntu 16.04with Intel XeonGold
6136 processors, installed with CUDA 9.0 and cuDNN 7.1.
We use up to 4 NVIDIA GeForce GTX 1080 Ti GPUs (11GB
memory and 11.3TFLOPs each device) on one server. The
DNN models are implemented in Tensorflow 1.5.1 [7].

3.2 Object Detection in Videos
Video object detection (VID) detects and tracks multiple
objects in a live video stream. It generates traces of objects
in continuous frames, i.e., tubelets. An object is represented
by a bounding box with a class label and a unique object
identifier. We adopt a generic VID scheme named tracking-
by-detection [20]. It detects objects in static video frames,
and then associates the detected object boxes across frames
to obtain tubelets. To reduce the high computation overhead
of object detection, a lightweight object tracking is used to
track objects across frames until a new detection takes place.
The Hungarian algorithm [34] is used to associate newly
detected objects with currently tracked objects. It uses the



MMSys ’19, June 18–21, 2019, Amherst, MA, USA Zhou Fang, Dezhi Hong, Rajesh K. Gupta

det

Trk Period

time

trk

fuse trk 
init

DETTRK TRK TRK

DET

DET

Det Period

time

Queries

Loads

GPUs data 
dependency

1

2

Figure 2: A video object detection application com-
posed of object tracking (TRK) and detection (DET)
tasks. A DET task contains sub-tasks including detect-
ing objects in the new frame, tracking objects from
the previous frame, fusing objects, and initializing the
tracker. DeepQuery programs the sub-tasks as queries
and uses predicted future GPU load in the scheduling
algorithms to maximize server utilization.

intersection over union (IoU) of two object boxes as the
association metric.

A VID application comprises TRK andDET tasks, as shown
in Figure 2. A DET task consists of four sub-tasks: tracking
objects from the previous frame, detecting objects in the
current frame, fusing the results, and initializing the object
tracker. The period is PTRK for TRK and PDET for DET. Fig-
ure 2 illustrates the GPU load that VID tasks generate. For
a DET task, the tracking and detection sub-task can run in
parallel on multiple GPUs, or multiple servers. If DETi takes
longer than PTRK to complete, TRKi+1 will be delayed due
to input data dependency, where i is the task index.
ObjectDetection:Weuse the Faster Region-based CNN [40]
(FRCNN) model to detect objects. There are three stages: a
Regional Proposal Network (RPN) stage detecting a fixed
number of object proposals, a classification (CLS) stage classi-
fying proposals, and a post-processing (POST) stage running
the Non-Maximum Suppressing (NMS) algorithm to convert
classified proposals to object bounding boxes.

The detection performance and speed of FRCNN detectors
are decided by the feature extractor and the number of object
proposals. Here we compare the delays of three detectors
provided in the Tensorflow Detection Model Zoo [4]: Incep-
tion V2 (100 proposals), Inception ResNet V2 (300 proposals),
and NasNet (300 proposals). Their detection performance
(mAP) on the COCO dataset [35] is 28, 37, and 43, respec-
tively [4]. Observed in Table 1, heavyweight models with
higher detection accuracy are slower, with delays from hun-
dreds of milliseconds to seconds, which limit their use in
real-time applications. To speed up these object detectors,
we present accelerating techniques that parallelize the CLS
stage on multiple GPUs in Section 3.3.
Object Tracking: We use a multi-object tracker based on
the Fully-Convolutional Siamese Networks (FC Siamese) [10].

Table 1: DNN inference delays (inms) of RT tasks: The
results are the average of 100 runs (with the standard
deviation in parenthesis).

Object Detection
Images 1 2 4 8 16

InceptionV2 38 (2) 64 (2) 125 (2) 239 (4) 478 (8)
IncResV2 370 (4) 728 (5) 1415 (8) 2863 (11) -
NasNet 1025 (8) 2063 (8) - - -

Object Tracking
Objects 1 2 4 8 16
Trk-Init 6 (0) 10 (0) 18 (0) 37 (1) 74 (2)
Trk-Trk 19 (1) 32 (1) 60 (2) 115 (2) 230 (3)

Table 2: Precessing Delays of FRCNN stages using dif-
ferent numbers of GPUs (ms): Data parallelization can
effectively accelerate DNN inference.

ResNet Inception V2
#GPU RPN CLS POST Total
1 144 (3) 245 (1) 13 (2) 382 (3)
2 140 (5) 119 (1) 13 (2) 274 (7)
4 140 (3) 63 (3) 13 (3) 219 (8)

NasNet
#GPU RPN CLS POST Total
1 244 (4) 747 (4) 13 (3) 1004 (8)
2 243 (3) 382 (2) 10 (1) 637 (3)
4 243 (3) 194 (1) 11 (1) 448 (3)

The tracker extracts CNN features from both the target and
the search regions, and then localizes the target using a score
map obtained from cross-correlation of the features. Accord-
ingly, the tracking process contains two stages. The initializa-
tion (INIT) stage extracts features from a target and the track-
ing (TRK) stage extracts features from the search region in a
new frame and localizes the target. To track multiple objects,
the model takes multiple objects as the input of TRK, which
has the form (im, [trk_states...]), where im is a video frame,
trk_state is a tracking state including target feature and lo-
cation. As an input batch for the Siamese Network, the input
is transformed to ([search_regions...], [target_regions...]).
The output are the bounding boxes of tracked objects and
the tracking states with updated target feature and location.
Table 1 summarizes the delays for processing different

numbers of targets as a batch. Using a batch of 8 images
increases the throughput by a factor of 1.3 for INIT and TRK,
compared with processing a single object. To improve the
overall throughput, for tracking tasks which have few targets,
several tasks can be batched as ([imi ...], [[trk_states...]i ...]).
The batching should be aware of timing requirements for RT
tasks, because it increases the processing delays.

3.3 Data Parallelization
We consider speeding up DNN inference using data paral-
lelization on multiple GPUs in a server. For object detec-
tion, although many fast lightweight models have been pro-
posed [28, 30], heavyweight DNNs [53] still demonstrate



Serving DNNs at Cloud Edge for Vision Applications on Mobile PlatformsMMSys ’19, June 18–21, 2019, Amherst, MA, USA

Table 3: DNN inference delays of non-RT tasks (ms).
CNN Feature Extraction

Images 1 2 4 8 16
ResNet-152 14 (1) 19 (1) 30 (2) 56 (2) 99 (2)
VGG-16 56 (1) 114 (3) 206 (4) 488 (5) -

Scene Graph Detection
Object Proposals 2 4 16 64 -
Scene Graph 62 (1) 59 (2) 71 (1) 249 (3) -

Video Description
Video clips 1 16 64 128 256

S2T 48 (4) 52 (2) 206 (14) 323 (14) 589 (24)

much superior performance [4]. The parallelization tech-
nique is able to achieve both high performance and low delay,
which is valuable for RT applications. A FRCNN model can
be expedited by processing the CLS stage on multiple GPUs
in parallel. Each GPU classifies a portion of the proposals
generated in the RPN stage. We test how much the delay can
be reduced by evenly allocating the proposals on 1, 2 and
4 GPUs. As shown in Table 2, with parallelization using 4
GPUs, FRCNN (Inception ResNet V2) is 1.6 times faster, and
the more compute intensive FRCNN (NasNet) model is 2.2
times faster.
We implement the infrastructure support for data paral-

lelization in DeepQuery (see Section 4.4). It also works for
other parallelizablemodels. For example, processing pipelines
similar to FRCNN, which extract regional features from ob-
ject proposals, have been adopted by a variety of models, e.g.,
image description tasks using object features [9].

3.4 High-Level Vision Tasks
High-level vision tasks extract contextual information at
higher semantic levels. In this work, we consider them as
non-RT workloads and investigate scheduling techniques
to co-locate them with RT tasks, as well as to reduce their
influence on RT tasks.
CNN Feature Extraction: A feature extractor has the same
architecture as a CNN based object classifier [24, 28, 53]. The
difference is that a feature extractor removes the last fully-
connected classification layer and outputs a feature vector
instead of a classification label. Batching multiple queries in
CNN inference is effective in improving throughput [13, 22].
We measure inference delay for two popular CNNs, VGG-
16 [42] (130 million parameters) and ResNet-152 [24] (60
million parameters), as shown in Table 3.
Scene Graph Detection: A scene graph detection task (SG)
takes object proposals in an image as input, detects objects
and infers the relationships between objects. We consider
the model proposed in [47] that has three stages: generating
object proposals, extracting VGG-16 image features, and
inferring objects as well as their relationships using iterative
message passing. Different from object detection, object class

Object Detection and Tracking

Network Communication
Mobile Devices

Camera Video Stream

Scene Graph Detection

Video Description

Delay-Critical

Delay-Tolerant

Applications

In-Memory
Key-Value
Data Store

Query 
ManagerQueries

Offloading Controller

Object Detection and Tracking Scheduler
Future 

Queries

Master Server

Worker Servers

CPUs

Deployed DNN 
Models

GPUs

Figure 3: An overview of the DeepQuery system: The
master server contains an in-memory database to
cache the data, a query manager to manage queries
that process data, and a scheduler to coordinate
query executions. Queries are executed on the worker
servers equipped with GPUs.

labels are inferred using both the features of objects and
object relationships.

We measure SG delay excluding the object proposal stage,
as shown in Table 3. The delay includes the VGG-16 delay in
Table 3. Similar to multi-object tracking, the delay depends
on image context, i.e., the number of object proposals in this
case. In our implementation, the proposals are generated
from an object detector using a low threshold of detection
confidence score (0.01).
Video Description: A video description task generates a
sentence in natural language from a video clip. We adopt the
sequence to sequence model [44] that takes the CNN features
of video frames as input, which are encoded by a stacked
LSTM with two hidden layers [27]. The LSTM decodes the
features into a sequence of words. Our implementation takes
video clips of 80 frames as input, with a CNN feature dimen-
sion of 4096. The serving system can improve the throughput
of video description by batching video clips, as shown in Ta-
ble 3.

4 DEEPQUERY SYSTEM
DeepQuery is a DNN model serving system for vision appli-
cations on mobile platforms. It is deployed on the cloudlet
that consists of a cluster of GPU servers. Figure 3 illustrates
the architecture of DeepQuery: Mobile clients offload vision
applications using DeepQuery’s APIs to upload data and
submit queries on the data. On the server side, the master
server manages data in a distributed in-memory key-value
database. When the input data for a query are complete, the
master dispatches them to worker servers for processing,
which deploy DNNs as micro-services. The scheduler selects
workers to dispatch queries and controls the batch size of
DNN input on each worker.



MMSys ’19, June 18–21, 2019, Amherst, MA, USA Zhou Fang, Dezhi Hong, Rajesh K. Gupta

4.1 Application Timing Types
The system supports three types of DNN queries. Streaming
RT queries are generated from continuous delay-critical mo-
bile vision applications, which are considered as the primary
workloads in many mobile offloading frameworks [11, 16].
The DeepQuery scheduler prioritizes the executions of this
type of queries over the others. A second type are Non-
RT queries, which are delay-tolerant. Batching queries are
also non-RT and they process batches of input data. Non-RT
queries do not have tight delay constraints and are served by
the system in a best-effort manner. Mobile applications may
offload a mixed set of RT and non-RT queries. In the exam-
ple application in Figure 1, VID submits streaming RT TRK
and DET queries, SG queries are non-RT, and CNN feature
extraction of a video clip is a batching query.

4.2 Programming Model
A query defines a vision task to offload, using DNN models
or other vision algorithms. An application can submit multi-
ple queries to the server. The server creates a corresponding
job for each query, which contains a DAG of processing
stages. A stage is the atomic unit of data processing, cor-
responding to a DNN model or an algorithm served as a
micro-service. For example, FRCNN can be split to a pipeline
comprising RPN, CLS, and POST stages, where we can par-
allelize the CLS stage. The input and output data of stages
are cached in memory (not the key-value database). A stage
becomes executable when its preceding stages complete and
all input data are ready. As long as a job has runnable stages,
it stays in the ready queue and can be fetched by job runners.
Therefore it can run in parallel on multiple GPUs.

4.3 APIs
DeepQuery APIs separate operations that manage data and
queries that process data. There are three types of APIs:
Data Operations: Data operations manipulate data stored
on the server, including imagery data from mobile cameras
and processing results of queries. All data are stored in a dis-
tributed in-memory database as immutable key-value pairs.
The basic operations are ADD, GET, DEL to write, read, and
delete keyed data, respectively. The key contains a name field
and an index field. For example, a client adds the ith frame to
the database on server with "im:i" as the key, with "im" as the
name and i as the index. The data store supports higher level
stream and batch operations that wrap the basic operations
to handle a collection of key-value data. For example, a video
stream that contains frames with indices from i to j-1 can be
represented as "im:[i:j]".
Queries:A query specifies the type of the algorithm or DNN
model, the input and output data keys. The system routes
the query to a worker server that serves the corresponding
algorithm or model. After running the query, the output
data are paired with the output keys. They are cached on

Algorithm 1: A Request of DET Queries in VID.
Reques t {

dataOps =[
DataOp ( op=ADD, k= " im : i " , v= image ) ,
DataOp ( op=GET , k= " boxes : i " ) ] ,

q u e r i e s =[
Query ( model=TRK/TRK ,

i n pu t s =[ " im : i " , " t r k _ s t a t e s : i −1 " ] ,
ou t pu t s =[ " t _boxe s : i " , " t r k _ s t a t e s : i " ] ) ,

Query ( model=DET ,
i n pu t s =[ " im : i " ] ,
ou t pu t s =[ " d_boxes : i " ] ) ,

Query ( a l g o r i t hm=FUSE_OBJECTS ,
i n pu t s =[ " t _boxe s : i " , " d_boxes : i " ] ,
ou t pu t s =[ " boxes : i " ] ) ,

Query ( model=TRK/ INIT ,
i n pu t s =[ " im : i , boxes : i " ] ,
ou t pu t s =[ " t r k _ s t a t e s : i " ] ) ]

f u t u r eQu e r i e s =[
FutureQuery ( t a s k =TRK/TRK ,

t ime=t_now+per iod , b a t c h S i z e =nr_boxes ) ]
}

the server or sent back to the client, controlled by the data
operations. A querymay contain additional information such
as the parameters of the vision algorithms used.
FutureQueries: The scheduler (see Section 5) of DeepQuery
requires the information of future queries to predict GPU
load. The prediction is based on measured DNN process-
ing delays, network delays, and data dependencies between
queries. The application client may adjust offloading config-
urations. For example, the VID application may adjust the
period of tracking, or DNN model types, to tune the per-
formance and computational overhead. The FutureQueries
APIs are used to keep the scheduler updated with the future
queries. When a streaming RT application sends the ith of-
floading request, it needs to attach the information about the
(i +1) request next, including start times (tstar t ), DNN model
types (m), and input batch sizes (b) of upcoming queries.
Algorithm 1 shows an example of offloading a DET task

in VID. It contains four queries: tracking objects in a new
frame ("im:i") using the tracking states ("trk_states:i-1"), de-
tecting objects, fusing the tracking ("t_boxes:i"), and detect-
ing ("d_boxes:i") the results. At the end, the tracking states
are initialized for the fused object boxes. In the future queries
field, the next is a TRK query, with a batch size estimated as
the number of current tracked objects.

4.4 Worker Server and Query Processing
Aworker server has one or more GPUs. A GPU is wrapped by
the JobRunner module, which exposes APIs to deploy DNN
micro-services and process queries, and can serve multiple
DNN models. In the current implementation, we manually
place models on GPUs using configuration files. Automatic
model placement remains our future work. To use a model



Serving DNNs at Cloud Edge for Vision Applications on Mobile PlatformsMMSys ’19, June 18–21, 2019, Amherst, MA, USA

JobRunner

GPU:0

JobRunner

GPU:1

Job

Job

Job Queue

Query

Job

Job Job
Query

Query Query

Creates new job or join an 
existing job

running a job RPN

ParallelStage: Object Detection

CLS

CLS
POST

BatchStage: Feature Extraction

processed this
batch unprocessed

Parallelization on one worker (multiple GPUs)

Parallelization on multiple workers

Stage

Stage

Figure 4: Query processing on workers. A job is cre-
ated for each query. A job runner manages job execu-
tions and loaded DNN models on a GPU. A Parallel-
Stage can run on multiple GPUs to accelerate DNN in-
ference using data parallelization. A BatchStage pro-
cesses a batch of input data on multiple workers.

in DeepQuery, the micro-service interface must be imple-
mented, including methods to initialize the model, batch
multiple queries, and process input data.
The worker creates jobs to process queries. As shown in

Figure 4, runnable jobs are buffered in a ready job queue,
and each job runner fetches jobs from the queue to execute.
A job runner executes one job at a time, which means the
GPU device is exclusively used by a model. RT jobs are pri-
oritized in the ready queue, and jobs with the same timing
requirement are ordered by the query start timestamp tstar t .
Parallel Stages: A parallel stage runs a DNN inference on
multiple GPUs of one worker via data parallelization. It can
speed up the parallelizalbe stages of DNN models, such as
the CLS stage of FRCNN. The implementation adopts the
fork-join model. It requires customized methods to split the
input data and combine the output data. For FRCNN with
300 proposals, the outputs of the RPN stage include the co-
ordinates of proposal boxes (shape 300 × 4, serialized size
4.8KB) and the extracted CNN features (shape 75×100×1088,
serialized size 32MB). A job runner can run a part of CLS by
taking a sub-batch of the proposal boxes, and then combine
the classifications from all runners to obtain the final result.
When we process a parallel stage with a batch size b on

Nдpu GPUs, to dynamically decide the batch size for each
GPU, we consider the running job on each GPU, when GPU
Gk becomes free and tries to process a parallel stage, the
optimal batch bi to run on Gi satisfies

tendi + Dbi = tendj + Dbj and
Nдpu∑
1

bi = b, (1)

where Dbi is the estimated delay of processing bi , and tendi is
the time whenGi will become free. The methods to predict
Dbi and tendi will be presented in Section 5.1. Because the
estimated Dbi does not have a closed analytical form, to
avoid expensive numerical methods, we use a linear function
Db = kb to approximate it. The optimal bi is then obtained

as

bi = [(Dbi +

Nдpu∑
i=1

tendi )/Nдpu − t
end
i ]/Dbi · b, (2)

The system obtains bk using Equation (2) only for GPU
Gk that is requesting a new job to run. It updates values
tendk = tnow +Dbk and b ← b−bk . Equation 2 is re-evaluated
when another GPU tries to run this job.
Adaptive Batching: As discussed in the previous section,
DNNs may take visual data in different forms as input, e.g.,
images, objects, video clips. Theworker automatically batches
queries of lightweight DNN models in the ready job queue.
Before creating a job for a query, the worker first checks
whether there already exist this type of jobs in the ready
queue. If so, the query is appended to an existing job. Con-
sidering delay increase due to batching, the system sets a
default limit of the per job batch size for each DNN model.
No more query can be added if the batch size of the job ex-
ceeds the threshold. A query can also specify a customized
batch size limit, depending on its timing requirement.

4.5 Dispatching Queries to Workers
When the system has multiple workers, the scheduler routes
a query to the appropriate worker based on its supported
micro-service types and GPU load. It uses different strategies
for different query types.
Streaming RT Queries: For a streaming RT query Q , the
scheduler receives its information as a future query Q f uture ,
attached to the previous offloading request. The scheduler se-
lects the worker to dispatchQ at this time, ahead of when the
real query arrives. It is necessary because Q f uture must be
allocated to one workerWk , to update its set of future queries
{Q f uture }k for accurate GPU load prediction for each worker.
The worker selection algorithms are based on predicted GPU
contention and load (see Section 5.3).
Non-RTQueries: The worker to dispatch a non-RT query is
selected when it arrives. Because non-RT tasks can only run
when there are no runnable RT tasks. It selects the worker
with the least total GPU load, calculated as

∑
q∈Q Dq , where

Dq is the delay of query q, Q is the set of RT and non-RT
queries allocated to a worker, including future RT queries.
Batching Queries: A batching query can run on several
workers in parallel. The master dispatches the query to a few
workers and maintains the information of processed data in
the batch. Before running the query, a worker communicates
with the master to get a sub-batch of the input data. The sub-
batch size is controlled by the scheduler to avoid affecting
future RT queries on the worker (see Section 5.2).

5 SCHEDULING
The scheduler of the master server prevents non-RT queries
from executing, or limits their input batch sizes, to avoid GPU
resource contention with future RT queries. It also routes



MMSys ’19, June 18–21, 2019, Amherst, MA, USA Zhou Fang, Dezhi Hong, Rajesh K. Gupta

0 20 40 60 80 100 120

Time (s)

0

0.1

0.2

0.3

0.4

D
e
la

y
 (

s
) Det with AutoTune

Trk with AutoTune

Det w/o AutoTune

Trk w/o AutoTune

(a) DNN processing delays.

0 0.1 0.2 0.3 0.4

Delays (s)

0

0.2

0.4

0.6

0.8

1

C
D

F

Det with AutoTune

Trk with AutoTune

Det w/o AutoTune

Trk w/o AutoTune

(b) CDFs of delays.

Figure 5: DNN processing delays for object tracking
and detection with and without cuDNN AutoTune.
When multiple models run on a shared GPU, Auto-
Tune may incur delay spikes when it profiles the in-
put data for a model. We switch off AutoTune to avoid
spikes and improve the accuracy of delay predictions.

queries to workers based on the estimated GPU load of each
worker. These functionalities are based on the scheduler’s
capability to predict future GPU load.

5.1 Predicting GPUWorkloads
For workerWk , the scheduler predicts tendk and {Q f uture }k .
tendk is the ending time of the current job. It is predicted as
tendk = tnow + Dm

b when the worker starts to run a job. Dm
b

is the delay for running the DNN modelm with a batch size
b. tendk = tnow for free workers.

The set {Q f uture }k consists of future streaming RT queries
allocated toWk . It is predicted based on the starting times
(tstar t ), batch sizes (b), and DNN model types (m) of future
queries, provided by the FutureQueries APIs. The scheduler
removes a future query Q f uture

i from the set when it starts
the corresponding query Qi onWk .
Interference on Shared GPU: Several DNN models can
run on sharedGPUs to improve resource utilization of cloudlet
servers. A JobRunner executes one DNN inference job at a
time. Intuitively, inferences do not exist when different DNNs
run in sequence on a GPU. However, as shown in Figure 5a,
delay spikes of tracking tasks (the blue lines) are observed
when the tracking and detection models are on the same
GPU. The AutoTune function that profiles input data to opti-
mize batching processing in the CuDNN library is the source
of delay spikes. Re-profiling happens when DNN workloads
change and thus causes delay spikes. Figure 5a shows that
the spikes are eliminated after turning off AutoTune. The
advantages and drawbacks of AutoTune are clearly illus-
trated in Figure 5b. AutoTune speeds up FRCNN by around
10ms, whereas it results in long tails of TRK delays. In the
system, we tune off AutoTune for machines that co-locate
models for RT tasks and other workloads, in order to avoid
unpredictable delay spikes.

0 20 40 60 80 100 120

Time (s)

0

10

20

30

40

50

60

O
b

je
c
t 

N
u

m
b

e
r

Detected Objects

Object Proposals

(a) Number of objects.

-30 -20 -10 0 10 20 30

Estimation Errors (ms)

0

0.2

0.4

0.6

0.8

1

C
D

F

DET

TRK

TRK (future)

SG

(b) Delay estimation errors.

Figure 6: (a) Number of object boxes in a sample video
stream: the numbers of objects and proposals depend
on the video context and may vary significantly. (b)
Delay estimation performance: the varying data size
causes errors in delay prediction for queries that take
the data as an input batch, e.g., TRK and SG queries.

EstimatingDNNDelay:As discussed in Section 3, for DNN
processing delays Dm

b , the variances are reasonably small
comparing to the delays. Therefore Dm

b is regarded as a con-
stant in the estimation. To capture the drift of Dm

b due to
runtime fluctuation, the scheduler measures new samples D
and updates the estimate as Dm

b ← α · Dm
b + (1 − α ) · D. If

the scheduler has no previous measurement of Dm
b , it selects

two nearest batch sizes bi and bj whose delay measurements
available and interpolates to estimate Dm

b . The estimate is
replaced by the measured delay after processing the DNN.

The processing delay Dm
b of one image is varies for some

tasks, e.g., object tracking and scene graph detection for
which b is the number of objects. Figure 6a shows the vary-
ing batch sizes for the two tasks, which are tracked objects
(detection score over 0.5) and object proposals (score over
0.01). The estimation errors of tracking, detection (FRCNN
Inception ResNet V2), and scene graph detection are given in
Figure 6b. The errors are on the level of several milliseconds,
which are reasonably low for load estimation.

In predicting future loads for streaming RT queries, the
client needs to provide the batch sizes for future queries.
For a task with varying batch sizes, it may introduce addi-
tional prediction errors. For example, for object tracking, we
use bi+1 = bi assuming that the salient objects are slowly
changing between two successive frames i and i + 1. The
number of targets may change after running a DET task. It
results in prediction errors of future query batch sizes. We
give the errors of predicting Dm

b of TRK for bi+1 in Figure 6b,
which are evidently larger than predicting Dm

b for bi . These
large errors only take place after DET queries, which have a
portion of RTRK/PDET in all TRK queries. The errors result
in performance degradation in predicting GPU loads and
contentions for the scheduler.
Network Delay and Compensation: FutureQueries APIs
provide starting times tstar tcl ient of future queries on the client
side. The time when a query arrives at the server tstar tserver



Serving DNNs at Cloud Edge for Vision Applications on Mobile PlatformsMMSys ’19, June 18–21, 2019, Amherst, MA, USA

is given by tstar tserver = tstar tcl ient + dnet + δclock , where dnet is
the upstream network delay, and δclock is the clock offset
between the client and the server. We therefore estimate
∆star t = dnet + δclock and obtain tstar tserver accordingly for
future queries. We measure samples ∆ of ∆star t and use a
smoothed value over the samples as the estimate ∆star t ←

β · ∆star t + (1 − β ) · ∆. In this work, we consider a cloudlet
setting using Wi-Fi networks in a university campus. Using
Raspberry Pi 3 board as the mobile device, we measure the
upstream delays offloading video frames with sizes from
21KB to 64KB. The 90 percentile is 23ms and the 99 percentile
is 68ms.

5.2 Dynamic Batching for Non-RT Jobs
Resource utilization can be improved by co-locating RT and
non-RT jobs on shared GPUs. It requires that non-RT jobs
yield GPUs to any RT jobs that are ready to run. On CPUs,
it is enabled by preemptive multi-tasking. However, without
special handling in context switches enabled by driver exten-
sion, preemption incurs large overheads in both processing
delay and throughput for GPU workload [37, 43]. Since such
extensions are not yet generally available, this work solves
the preemption problem by predicting future RT jobs and
accordingly limiting the time budget for running non-RT
jobs, in order to have them end before RT jobs start.
When a GPU (Gk ) tries to run a non-RT job with a batch

size bk , the scheduler reduces bk if the original value may
affect a future RT query. It looks up the future RT queries
on each GPU Gi ({Q

f uture
i } with a size Nquery ) and obtains

a sorted list of the start times of future queries tstar ti , where
i ∈ [1,Nquery]. The algorithm selects the maximal bk that
does not influence any future RT query. Given that there
are currently Nnr t running non-RT jobs, the time budget
for running them is limited by the latest Nnr t start times
(tstar ti ). The time budget for run a new non-RT job is given as
Dbudдet = tstar tk −tnow ifk ≤ Nquery , wherek = Nдpu−Nnr t .
Dbudдet = ∞ if k > Nquery . The scheduler then reduces the
batch size bk to satisfy Dbk ≤ Dbudдet , and then runs the
non-RT job.
For a non-batching non-RT job, to avoid influencing RT

queries, the scheduler estimates the time budget that a free
GPU has to execute it. If the budget is not enough, instead of
reducing the batch size, the scheduler keeps the job pending
and the GPU idle.

5.3 Scaling to Multiple Workers
When there are multiple workers, the scheduler selects the
best worker to dispatch each incoming query. As described
in Section 4.5, for RT queries, when the server receives query
Qi with the information of the next queryQi+1, the scheduler
estimates the resource contention Φk after dispatching Qi+1

to workerWk as follows:

Φ =

∫ tend

tnow
ϕ (t )dt , (3)

where ϕ (t ) is a function of the number of requested GPUs
θ (t ) at time t , given by

ϕ =



θ (t ) − Nдpu , if θ (t ) > Nдpu or (θ (t ) < Nдpu and Φ > 0).
0, otherwise.

(4)
Equation (3) and (4) accumulate the contentionΦwhen the

system is overloaded, and consume Φwhen it is underloaded.
The scheduler selects the worker using k = argmax Φk .
When there is no GPU contention on any workers, we con-
sider two strategies: (1) selecting the worker to which the
previous query of the application is allocated (contention-
affinity), to avoid transferring application state data (if any)
between workers; and (2) selecting the worker with the least
GPU load of running and future queries (named contention-
load). We also implemented a baseline method that selects
the worker with minimum load, without considering con-
tention (load). The strategies are compared in Section 6.3.

6 EVALUATION
We consider the scenarios that multiple clients run applica-
tions in Figure 1 on local servers as described in Section 3.1.
We first evaluate the effect of data parallelization with dy-
namic batching (Section 6.1), and then demonstrate the effec-
tiveness of co-locating RT and non-RT queries (Section 6.2),
as well as the algorithms that dispatch queries to workers
(Section 6.3).

6.1 Dynamic Batching for Parallel Stages
To evaluate data parallelization and dynamic batching, we
set 4 clients running the VID application on 4 GPUs, with
two sets of configurations: PTRK = 160ms, PDET = 1.6s, and
PTRK = 200ms and PDET = 2s. We test two FRCNN models,
Inception ResNet V2 and NasNet, using 300 proposals, i.e.,
b = 300. As described in Section 3.2, a DET task comprises
of tracking, detection, and result fusion. We use the end
times of result fusion to obtain DET delay. We use the query
processing delay on servers as the performance metric. It
includes server queueing and processing delays, but excludes
network delays between clients and servers.

The comparisons include three baselines: (1) no paralleliza-
tion; (2) a fixed batch size bi = 30 and (3) bi = 75. As shown
in Figure 7a. We observe that parallelization effectively im-
proves the delays for both TRK and DET queries. For both
models, although a smaller batch size (bi = 30) means finer
grains of workload balance on multiple GPUs, it decreases
the processing throughput. As a result, it has longer TRK
and DET delays compared to bi = 75. Dynamic batching
control evidently improves the DET delay for both models.



MMSys ’19, June 18–21, 2019, Amherst, MA, USA Zhou Fang, Dezhi Hong, Rajesh K. Gupta

0 0.1 0.2 0.3 0.4

Query Delays (s)

0

0.2

0.4

0.6

0.8

1

C
D

F

DET (no paral)

TRK (no paral)

DET (fixed-30)

TRK (fixed-30)

DET (fixed-75)

TRK (fixed-75)

DET (dynamic)

TRK (dynamic)

(a) Inception ResNet V2.

0 0.2 0.4 0.6 0.8 1

Query Delays (s)

0

0.2

0.4

0.6

0.8

1

C
D

F

DET (no paral)

TRK (no paral)

DET (fixed-30)

TRK (fixed-30)

DET (fixed-75)

TRK (fixed-75)

DET (dynamic)

TRK (dynamic)

(b) NasNet.

Figure 7: Distributions of DET and TRK query delays,
using different batching strategies for the parallelCLS
stage of FRCNN. It shows that using a small fixed
batch reduces the throughput. However, a large fixed
batch cannot be fully parallelized. The dynamic batch-
ing method selects the batch size considering all the
running jobs on all GPUs to improve parallelism and
reduce delay.

For NasNet, we observe that the TRK delay becomes larger
than bi = 75 when dynamic batching is used. This is be-
cause dynamic batching may allocate larger batches (> 75)
in the CLS stage of FRCNN that compete GPU resource with
TRK jobs. The result demonstrates that dynamic batching is
effective in reducing delays for jobs with parallel stages.

6.2 Co-locating RT and Non-RT Queries
To evaluate themethod for co-locating RT and non-RT queries,
we process both types of queries on shared GPUs and mea-
sure the influence on the delays of RT queries.
Batching Queries:We evaluate the dynamic batching algo-
rithm for non-RT jobs using a ResNet-152 feature extractor
as an example. The algorithm should use as large batch sizes
as possible to increase the throughput of ResNet-152, while
avoiding affecting RT queries. A client runs a VID appli-
cation (RT) on a GPU, with a low overhead configuration
PTRK = 400ms, PDET = 4s. Another client submits a non-RT
query extracting ResNet-152 features from a bath of 1024
images. The batching query may result in larger delays of
VID queries. As the baselines, we use a fixed batch size 1, 4,
6, 8, and 16 to process the ResNet-152 query. As shown in
Figure 8, a small batch size b = 1 results in a large process-
ing delay of CNN, because of a low throughput. However, a
large batch size b = 16 results in larger delays of TRK jobs,
because it may occupy the GPU when a TRK is ready to run.
The result shows that the dynamic batching methods can
improve the throughput of non-RT jobs while maintaining
low TRK delays. Although selecting an appropriate fixed
batch size helps improve the performance as well, the value
needs to be selected manually which is undesired.
The time slots of jobs on GPU is shown in Figure 9. The

RT queries (DET, TRK) are plotted in red, and ResNet-152 is

8 10 12 14 16 18 20

CNN Feature Extraction Delays (s)

0

0.1

0.2

0.3

0.4

0.5

T
ra

c
k
in

g
 D

e
la

y
s
 (

m
s
) 90-100 Percentiles

dynamic

b=1b=4

b=6
b=8

b=16

Figure 8: Delays of CNN (non-RT) and delay tail per-
centiles of TRK (RT) queries by different batching
strategies. The dynamic batching method decides the
maximal batch size that does not affect the RT jobs,
which improves the delays of both RT and non-RT
jobs.

4 6 8 10 12 14 16

Time (s)

(c) Dynamic Batch Size

(b) Batch Size = 16

(a) Batch Size = 4

A delayed TRK due to a running CLS

Figure 9: Time slots of DET, TRK (in yellow) and CNN
jobs (in red) on one GPU. Using a small batch size for
CNN (4) leads to a low processing throughput and a
long delay, as shown by the total makespan of the yel-
low slots. A large batch size (16) results in significant
contention with RT jobs: the long duration of the yel-
low slots affects the start times of the red slots. It illus-
trates how the dynamic batching method selects the
batch size for non-RT jobs according to the time bud-
get to complete before RT jobs.

in yellow. It illustrates how a large batch size influences TRK
jobs. Our algorithm selects the batch sizes dynamically to
have non-RT jobs complete before future RT jobs start.
Non-Batching Queries: For a non-RT query with a non-
batching input, the scheduler runs it only when it does not
affect future RT queries. We use scene graph queries process-
ing 1 image as the example. Interestingly, we observe that the
delay of SG depends on the number of object proposals. It is
varying frame to frame in a video. The scheduler estimates
the delay of a SG task to decide whether it can run.
In the experiments, a client running VID submits SG

queries together with DET queries. SG takes the object pro-
posals obtained from DET as input. The delays of SG queries
are from server receiving the image to obtaining scene graphs,
including the delays of DET. The experiments have 2 clients
and one of them submits SG queries. As shown in Figure 10,



Serving DNNs at Cloud Edge for Vision Applications on Mobile PlatformsMMSys ’19, June 18–21, 2019, Amherst, MA, USA

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Delays (s)

0

0.2

0.4

0.6

0.8

1

C
D

F

DET

TRK

DET (w SG)

TRK (w SG)

SG (w SG)

DET (w nRT SG)

TRK (w nRT SG)

SG (w nRT SG)

DET

SG

TRK

Figure 10: CDFs of DET, TRK and SG serving 2 clients,
in the cases of no SG queries and one client submit-
ting SG queries (with and without scheduling SG as
non-RT jobs). It shows that when SG queries are non-
RT, they yield resource to RT queries and are slower
to complete. As a result, RT queries become faster as
observed from the delay CDFs.

SG queries introduce additional delays to TRK and DET
queries, which are originally 370ms (TRK) and 429ms (DET).
When one client submits a SG query with each DET query,
without scheduling SG as non-RT queries, TRK and DET
delays increase to 471ms and 489ms. The scheduling method
reduces the delays to 374ms (TRK) and 452ms (DET). In this
case, because SG tasks can only run when there is enough
time budget, their processing delays increase dramatically.

6.3 Worker Selection Strategies
To evaluate the algorithms to dispatch incoming queries to
workers, Figure 11 compares the delays of DET and TRK
queries when 4 clients run on a worker with 4 GPUs, and
another setting with two workers, each with 2 GPUs. Ob-
ject detection uses the Inception ResNet V2 FRCNN model.
Because data parallelization causes difference in delays for
workers with different numbers of GPUs, it is not used to
do a fair comparison. The results show that the one worker
setup has better performance, the tail delays of DET and
TRK are 429ms and 437ms respectively. It is because there
is no workload balance issues in this case. However, when
distributing workloads on multiple workers, the imbalance
of workloads may reduce the utilization of GPUs. Although
the scheduler aims to balance GPU loads by minimizing con-
tention, the prediction errors of network delays and DNN
processing delays result in remaining contention. The result
shows that the contention-load approach has the minimal
tail DET and TRK delays, which are 597ms and 512ms. The
CDFs of delays are similar for contention-affinity and load,
but they have much larger tail query delays.

7 DISCUSSION
We next discuss the broader applications of our work beyond
the constraints and assumptions of DeepQuery.
CombiningDeepQuerywithConventional Serving Sys-
tems:Going beyond cloudlets, DeepQuery can also be backed

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Delays (s)

0

0.2

0.4

0.6

0.8

1

C
D

F

DET (1 worker)

TRK (1 worker)

DET (contention-affinity)

TRK (contention-affinity)

DET (load)

TRK (load)

DET (contention-load)

TRK (contention-load)

Figure 11: CDFs of DET and TRK query delays serv-
ing 4 clients, running on 1 worker with 4 GPUs, and
2 workers with 2 GPUs, using different scheduling
strategies: contention-affinity, load, contention-load.
It shows that delays increase when the computing
resources are distributed onto two machines due to
load imbalance. Contention-load performs the best in
worker selection and achieves the smallest tail delays.

by cloud DNN serving systems [1–3]. In this mobile-edge-
cloud deployment, DeepQuery processes RT queries on local
servers, and a portion of delay-tolerant queries as well to
fully utilize local compute resources. It can process delay-
tolerant queries that have tight data dependency with RT
queries, thus reducing the amount of data transferred to the
cloud, while the remaining queries can be sent to the cloud
for processing.
Tuning Mobile Offloading Online: Many mobile offload-
ing frameworks adapt offloading configurations online to
tune on-board energy consumption and application perfor-
mance [11, 18]. For example, a VID applicationmay adjust the
detection period or the DNN model of detection, according
to battery level, input video quality, and network condition.
Although DeepQuery includes the predictability of mobile
workloads, it supports such online changes because it only
needs to predict for the next request. When offloading config-
uration is changed when it submits the request i , the changes
will be applied starting from request i+1.
DNN Model Placement: There are several points to con-
sider to place DNN models on GPUs: (1) the total memory
overheads of the models on a GPU must be within the limit
of the device and the system; (2) the number of GPUs to
run a DNN model depends on the query rate of the model;
(3) when co-locating different models together, we should
consider their application timing requirements. For exam-
ple, co-locating models for RT and non-RT queries helps
improve resource utilization. Online model placement tech-
niques need to be investigated in the future work.

8 CONCLUSION
In this paper, we present DeepQuery, a mobile offloading
system that serves DNNs for computer vision applications.
DeepQuery provides a new set of APIs to manage mobile
data on servers as in-memory key-value pairs and program



MMSys ’19, June 18–21, 2019, Amherst, MA, USA Zhou Fang, Dezhi Hong, Rajesh K. Gupta

DNN models as queries over the data. It provides the system
support to accelerate DNN inference using data paralleliza-
tion. To increase GPU resource utilization, it co-locates RT
and non-RT tasks on shared GPUs. The resource contention
on GPUs can be alleviated by controlling the batch sizes
of non-RT tasks dynamically, based on the predictions of
GPU resources requested by RT tasks. We demonstrate the
effectiveness of DeepQuery through studying real world
applications and a variety of DNN models.

REFERENCES
[1] AWS Machine Learning. https://aws.amazon.com/machine-learning/.

[Online; accessed 16-July-2018].
[2] Azure Machine Learning. https://azure.microsoft.com/overview/

machine-learning/. [Online; accessed 16-July-2018].
[3] Google Cloud Machine Learning. https://cloud.google.com/products/

machine-learning/. [Online; accessed 16-July-2018].
[4] Tensorflow Detection Model Zoo. https://github.com/tensorflow/

models/blob/master/research/object_detection/g3doc/detection_
model_zoo.md. [Online; accessed 16-July-2018].

[5] The AWS DeepLens. https://aws.amazon.com/deeplens/. [Online;
accessed 16-July-2018].

[6] The Google Glasses. https://x.company/glass/. [Online; accessed
16-July-2018].

[7] Martín Abadi et al. TensorFlow: A System for Large-Scale Machine
Learning. In OSDI, 2016.

[8] T. Ajayi et al. Celerity: An open source RISC-V tiered accelerator fabric.
In HOTCHIPS, 2017.

[9] P. Anderson et al. Bottom-Up and Top-Down Attention for Image
Captioning and Visual Question Answering. In CVPR, 2018.

[10] L. Bertinetto et al. Fully-Convolutional Siamese Networks for Object
Tracking. In ECCV Workshops, 2016.

[11] Tiffany Yu-Han Chen et al. Glimpse: Continuous, Real-Time Object
Recognition on Mobile Devices. In SenSys, 2015.

[12] Zhuo Chen et al. An Empirical Study of Latency in an Emerging Class
of Edge Computing Applications for Wearable Cognitive Assistance.
In SEC, 2017.

[13] D. Crankshaw, , et al. Clipper: A Low-latencyOnline Prediction Serving
System. In NSDI, 2017.

[14] A Elgammal et al. Non-parametric model for background subtraction.
In David Vernon, editor, ECCV, pages 751–767, 2000.

[15] J. Fowers et al. A Configurable Cloud-Scale DNN Processor for Real-
Time AI. In ISCA, 2018.

[16] K. Ha, , et al. Towards Wearable Cognitive Assistance. In MobiSys,
2014.

[17] S. Han et al. Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huffman coding.
arXiv:1510.00149, 2015.

[18] Seungyeop Han, , et al. MCDNN: An Approximation-Based Execution
Framework for Deep Stream Processing Under Resource Constraints.
In MobiSys, 2016.

[19] Song Han et al. EIE: efficient inference engine on compressed deep
neural network. In ISCA, 2016.

[20] W. Han et al. Seq-NMS for Video Object Detection. arXiv:1602.08465,
2016.

[21] A. Haque et al. Towards Vision-Based Smart Hospitals: A System for
Tracking and Monitoring Hand Hygiene Compliance. In MLHC, 2017.

[22] J. Hauswald, , et al. DjiNN and Tonic: DNN As a Service and Its
Implications for Future Warehouse Scale Computers. In ISCA, 2015.

[23] J. Hauswald et al. Sirius: An Open End-to-End Voice and Vision
Personal Assistant and Its Implications for Future Warehouse Scale

Computers. In ASPLOS, 2015.
[24] K. He et al. Deep Residual Learning for Image Recognition. In CVPR,

2016.
[25] K. He et al. Mask R-CNN. In ICCV, 2017.
[26] Fabian CabaHeilbron et al. ActivityNet: A large-scale video benchmark

for human activity understanding. In CVPR, 2015.
[27] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural

Comput., 9(8):1735–1780, November 1997.
[28] Andrew G. Howard et al. MobileNets: Efficient Convolutional Neural

Networks for Mobile Vision Applications. arXiv:1704.04861, 2017.
[29] C.-C. Hung et al. Videoedge: Processing camera streams using hierar-

chical clusters. In SEC, 2018.
[30] F. N. Iandola et al. SqueezeNet: AlexNet-level accuracy with 50x fewer

parameters and <0.5MB model size. arXiv:1602.07360, 2016.
[31] Norman P. Jouppi et al. In-datacenter performance analysis of a tensor

processing unit. In ISCA, 2017.
[32] Y. Kang, , et al. Neurosurgeon: Collaborative Intelligence Between the

Cloud and Mobile Edge. In ASPLOS, 2017.
[33] R. Krishna et al. Visual Genome: Connecting Language and Vision

Using Crowdsourced Dense Image Annotations. Int. J. Comput. Vision,
123(1):32–73, May 2017.

[34] H. W. Kuhn. The Hungarian method for the assignment problem.
Naval Research Logistics Quarterly, 2:83—-97, 1955.

[35] T.-Y. Lin et al. Microsoft coco: Common objects in context. In ECCV,
2014.

[36] Y. Lu et al. Optasia: A relational platform for efficient large-scale video
analytics. In SoCC, 2016.

[37] J. J. K. Park et al. Chimera: Collaborative Preemption for Multitasking
on a Shared GPU. In ASPLOS, 2015.

[38] J. Qiu et al. Going deeper with embedded fpga platform for convolu-
tional neural network. In FPGA, 2016.

[39] Meike Ramon, Stephanie Caharel, and Bruno Rossion. The speed of
recognition of personally familiar faces. Perception, 40(4):437–449,
2011.

[40] S. Ren et al. Faster R-CNN: Towards Real-Time Object Detection with
Region Proposal Networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2017.

[41] M. Satyanarayanan et al. The Case for VM-Based Cloudlets in Mobile
Computing. IEEE Pervasive Computing, 8(4):14–23, Oct 2009.

[42] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks
for Large-Scale Image Recognition. In ICLR, 2015.

[43] I. Tanasic et al. Enabling preemptive multiprogramming on GPUs. In
ISCA, 2014.

[44] S. Venugopalan et al. Sequence to Sequence – Video to Text. In ICCV,
2015.

[45] B. Wu et al. Squeezedet: Unified, small, low power fully convolutional
neural networks for real-time object detection for autonomous driving.
In CVPR, 2017.

[46] J. Wu et al. Quantized convolutional neural networks for mobile
devices. In CVPR, 2016.

[47] D. Xu, Y. Zhu, C. B. Choy, and L. Fei-Fei. Scene Graph Generation by
Iterative Message Passing. In CVPR, 2017.

[48] J. Xu et al. MSR-VTT: A Large Video Description Dataset for Bridging
Video and Language. In CVPR, 2016.

[49] T. Yao et al. MSR A MSM at ActivityNet challenge 2017. http://home.
ustc.edu.cn/~panywei/paper/Activitynet17.pdf, 2017. [Online].

[50] C. Zhang et al. Optimizing fpga-based accelerator design for deep
convolutional neural networks. In FPGA, 2015.

[51] H. Zhang, , et al. Live Video Analytics at Scale with Approximation
and Delay-Tolerance. In NSDI, 2017.

[52] T. Zhang et al. The Design and Implementation of a Wireless Video
Surveillance System. In MobiCom, 2015.

[53] B. Zoph et al. Learning Transferable Architectures for Scalable Image
Recognition. arXiv:1707.07012, 2017.

https://aws.amazon.com/machine-learning/
https://azure.microsoft.com/overview/machine-learning/
https://azure.microsoft.com/overview/machine-learning/
https://cloud.google.com/products/machine-learning/
https://cloud.google.com/products/machine-learning/
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://aws.amazon.com/deeplens/
https://x.company/glass/
http://home.ustc.edu.cn/~panywei/paper/Activitynet17.pdf
http://home.ustc.edu.cn/~panywei/paper/Activitynet17.pdf

	Abstract
	1 Introduction
	2 Background and Related Works
	3 DNN Workload
	3.1 Platform Specifications
	3.2 Object Detection in Videos
	3.3 Data Parallelization
	3.4 High-Level Vision Tasks

	4 DeepQuery System
	4.1 Application Timing Types
	4.2 Programming Model
	4.3 APIs
	4.4 Worker Server and Query Processing
	4.5 Dispatching Queries to Workers

	5 Scheduling
	5.1 Predicting GPU Workloads
	5.2 Dynamic Batching for Non-RT Jobs
	5.3 Scaling to Multiple Workers

	6 Evaluation
	6.1 Dynamic Batching for Parallel Stages
	6.2 Co-locating RT and Non-RT Queries
	6.3 Worker Selection Strategies

	7 Discussion
	8 Conclusion
	References

