
Moneta: A High-performance Storage Array

Architecture for Next-generation, Non-volatile

Memories

Adrian M. Caulfield Arup De Joel Coburn Todor I. Mollov

Rajesh K. Gupta Steven Swanson

Department of Computer Science and Engineering

University of California, San Diego

{acaulfie,arde,jdcoburn,rgupta,swanson}@cs.ucsd.edu, tmollov@ucsd.edu

Abstract—Emerging non-volatile memory technologies such as
phase change memory (PCM) promise to increase storage system
performance by a wide margin relative to both conventional
disks and flash-based SSDs. Realizing this potential will require
significant changes to the way systems interact with storage
devices as well as a rethinking of the storage devices themselves.
This paper describes the architecture of a prototype PCIe-
attached storage array built from emulated PCM storage called
Moneta. Moneta provides a carefully designed hardware/software
interface that makes issuing and completing accesses atomic. The
atomic management interface, combined with hardware schedul-
ing optimizations, and an optimized storage stack increases
performance for small, random accesses by 18x and reduces
software overheads by 60%. Moneta array sustain 2.8 GB/s
for sequential transfers and 541K random 4 KB IO operations
per second (8x higher than a state-of-the-art flash-based SSD).
Moneta can perform a 512-byte write in 9 us (5.6x faster than the
SSD). Moneta provides a harmonic mean speedup of 2.1x and a
maximum speed up of 9x across a range of file system, paging,
and database workloads. We also explore trade-offs in Moneta’s
architecture between performance, power, memory organization,
and memory latency.

Keywords-software IO optimizations; non-volatile memories;
phase change memories; storage systems

I. INTRODUCTION

For many years, the performance of persistent storage

(i.e., disks) has lagged far behind that of microprocessors.

Since 1970, microprocessor performance grew by roughly

200,000×. During the same period, disk access latency has

fallen by only 9× while bandwidth has risen by only 163× [1,

2].

The emergence of non-volatile, solid-state memories (such

as NAND flash and phase-change memories, among others)

has signaled the beginning of the end for painfully slow non-

volatile storage. These technologies will potentially reduce

latency and increase bandwidth for non-volatile storage by

many orders of magnitude, but fully harnessing their per-

formance will require overcoming the legacy of disk-based

storage systems.

This legacy takes the form of numerous hardware and

software design decisions that assume that storage is slow. The

hardware interfaces that connect individual disks to computer

systems are sluggish (∼300 MB/s for SATA II and SAS,

600 MB/s for SATA 600) and connect to the slower “south

bridge” portion of the CPU chip set [3]. RAID controllers

connect via high-bandwidth PCIe, but the low-performance,

general-purpose microprocessors they use to schedule IO

requests limit their throughput and add latency [4].

Software also limits IO performance. Overheads in the op-

erating system’s IO stack are large enough that, for solid-state

storage technologies, they can exceed the hardware access

time. Since it takes ∼20,000 instructions to issue and complete

a 4 KB IO request under standard Linux, the computational

overhead of performing hundreds of thousands of IO requests

per second can limit both IO and application performance.

This paper describes a prototype high-performance stor-

age array, called Moneta1, designed for next-generation non-

volatile memories, such as phase-change memory, that offer

near-DRAM performance. Moneta allows us to explore the

architecture of the storage array, the impact of software over-

heads on performance, the effects of non-volatile technology

parameters on bandwidth and latency, and the ultimate benefit

to applications. We have implemented Moneta using a PCIe-

attached array of FPGAs and DRAM. The FPGAs implement

a scheduler and a distributed set of configurable memory

controllers. The controllers allow us to emulate fast non-

volatile memories by accurately modeling memory technology

parameters such as device read and write times, array geom-

etry, and internal buffering.

Achieving high performance in Moneta requires simultane-

ously optimizing its hardware and software components. We

characterize the overheads in the existing Linux IO stack in

detail, and show that a redesigned IO stack combined with an

optimized hardware/software interface reduces IO latency by

nearly 2× and increases bandwidth by up to 18×. Tuning the

Moneta hardware improve bandwidth by an additional 75%

for some workloads.

We present two findings on the impact of non-volatile mem-

1“Moneta” is the Latin name for the goddess of memory.



ory performance and organization on Moneta’s performance

and energy efficiency. First, some optimizations that improve

PCM’s performance and energy efficiency as a main memory

technology do not apply in storage applications because of

different usage patterns and requirements. Second, for 4 KB

accesses, Moneta provides enough internal parallelism to com-

pletely hide memory access times of up to 1 µs, suggesting

that memory designers could safely trade off performance for

density in memory devices targeted at storage applications.

Results for a range of IO benchmarks demonstrate that

Moneta outperforms existing storage technologies by a wide

margin. Moneta can sustain up to 2.2 GB/s on random 4 KB

accesses, compared to 250 MB/s for a state-of-the-art flash-

based SSD. It can also sustain over 1.1 M 512 byte random

IO operations per second. While Moneta is nearly 10× faster

than the flash drive, software overhead beyond the IO stack

(e.g., in the file system and in application) limit application-

level speedups: Compared to the same flash drive, Moneta

speeds up applications by a harmonic mean of just 2.1×,

demonstrating that further work is necessary to fully realize

Moneta’s potential at the application level.

The remainder of the paper is organized as follows. Sec-

tion II describes the Moneta array. Sections III, IV, and V

analyze its performance and describe software and hardware

optimizations. Section VI compares Moneta to existing storage

technologies, and Section VII describes related work. Finally,

Section VIII concludes.

II. THE MONETA PROTOTYPE

This section briefly discusses the memory technologies

that Moneta targets and then describes the baseline Moneta

architecture and the hardware system we use to emulate it.

A. Non-volatile memories

Several fast, non-volatile memory technologies are vying

to replace or supplement flash as a solid-state storage system

building block. These include phase-change memories (PCM),

as well as spin-torque transfer memories [5], memristor [6],

race-track [7], and carbon nanotube-based storage devices [8].

PCM is the most promising of these upcoming memory

technologies.

In this work we model PCM as the storage technology

for Moneta, but the basic design of Moneta does not rely

on the particular characteristics of PCM. Moneta assumes the

memory technology has performance (latency and bandwidth)

close to that of DRAM and that it presents a DRAM-like

interface.

Phase change memory (PCM) stores data as the crystalline

state of a chalcogenide metal layer [9], and recent work [10,

11] has demonstrated that PCM may become a viable main

memory technology as DRAM’s scaling begins to falter. The

analysis in [10] provides a good characterization of PCM’s

performance and power consumption.

Despite this promise, PCM does suffer from some reliability

concerns: A PCM bit has a typical lifetime of 10
8 program

cycles, so it requires management to ensure reasonable device

Mem

Ctrl

Mem

Ctrl

Mem

Ctrl

Mem

Ctrl

Start

Gap

Start

Gap

Start

Gap

Start

Gap

Ring (4 GB/s)

DMA

PCIe 1.1 x8 (2 GB/s Full Duplex)

Request 

Queue

16 GB 16 GB 16 GB 16 GB

2x 8 KB Buffers

Scoreboard
Ctrl 0
Ctrl 1
Ctrl 2
Ctrl 3

Request 

Processor

Scheduler

Fig. 1. The Moneta system Moneta’s four PCM memory controllers connect
to the scheduler via a 4 GB/s ring. A 2 GB/s full duplex PCIe link connects
the scheduler and DMA engine to the host. The scheduler manages two 8 KB
buffers as it processes IO requests in FIFO order. A scoreboard tracks the
state of the memory controllers.

lifetime. Several PCM wear-leveling schemes exist [10, 12–

15]. Moneta uses the start-gap scheme in [15] which provides

wear-leveling with less than 1% overhead.

B. Moneta array architecture

Figure 1 shows the architecture of the Moneta storage

array. Moneta’s architecture provides low-latency access to

a large amount of non-volatile memory spread across four

memory controllers. A scheduler manages the entire array

by coordinating data transfers over the PCIe interface and

the ring-based network that connects the independent memory

controllers to a set of input/output queues. Moneta attaches to

the computer system via an eight-lane PCIe 1.1 interface that

provides a 2 GB/s full-duplex connection (4 GB/s total).

The Moneta scheduler

The scheduler orchestrates Moneta’s operation. It contains

a DMA controller and a Programmed IO (PIO) interface to

communicate with the host machine, a set of internal buffers

for incoming and outgoing data, several state machines, and

an interface to the 128-bit token-ring network. The Moneta

scheduler stripes internal storage addresses across the memory

controllers to extract parallelism from large requests. The

baseline stripe size is 8 KB.

Requests arrive on the PCIe interface as PIO writes from

the software driver. Each request comprises three 64-bit words

that contain a sector address, a DMA memory address (in host

memory), a 32-bit transfer length, and a collection of control

bits that includes a tag number and an op code (read or write).

Sectors are 512 bytes. The tag is unique across outstanding

requests and allows for multiple in-flight requests, similar to

SATA’s Native Command Queuing [16].



Read

0.5 2 8 32 128 512

B
a

n
d

w
id

th
 (

G
B

/s
)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Write

Random Request Size (KB)

0.5 2 8 32 128 512

Ideal
Moneta+2Q
Moneta+Spin
Moneta+Atomic
Moneta+NoSched
Moneta−Base 50% Read, 50% Write

0.5 2 8 32 128 512

Fig. 2. Moneta bandwidth measurements The PCIe link bandwidth (labeled “ideal”) limits performance for large accesses, but for small accesses software
overheads are the bottleneck for the baseline Moneta design (the solid black line). The other lines measure results for optimized version described in Section IV
and V.

The scheduler places requests into a FIFO queue as they

arrive and processes them in order. Depending on the request’s

size and alignment, the scheduler breaks it into one or more

transfers of up to 8 KB. It then allocates a buffer for each

transfer from two 8 KB buffers in the scheduler. If buffer

space is not available, the scheduler stalls until another transfer

completes.

For write transfers, the scheduler issues a DMA command

to transfer data from the host’s memory into its buffer. When

the DMA transfer completes, the scheduler checks an internal

scoreboard to determine whether the target memory controller

has space to receive the data, and waits until sufficient space is

available. Once the transfer completes, the scheduler’s buffer

is available for another transfer. The steps for a read transfer

are similar except that the steps are reversed.

Once the scheduler completes all transfers for a request,

it raises an interrupt and sets a tag status bit. The operating

system receives the interrupt and completes the request by

reading and then clearing the status bit using PIO operations.

The DMA controller manages Moneta’s 2 GB/s full-duplex

(4 GB/s total) channel to the host system. The DMA inter-

leaves portions of bulk data transfers from Moneta to the

host’s memory (read requests) with DMA requests that retrieve

data from host’s memory controller (write requests). This

results in good utilization of the bandwidth between the host

and Moneta because bulk data transfers can occur in both

directions simultaneously.

Memory controllers

Each of Moneta’s four memory controllers manages an

independent bank of non-volatile storage. The controllers

connect to the scheduler via the ring and provide a pair of 8 KB

queues to buffer incoming and outgoing data. The memory

array at each controller comprises four DIMM-like memory

modules that present a 72 bit (64 + 8 for ECC) interface.

Like DRAM DIMMs, the memory modules perform ac-

cesses in parallel across multiple chips. Each DIMM contains

four internal banks and two ranks, each with an internal row

buffer. The banks and their row buffers are 8 KB wide, and

the DIMM reads an entire row from the memory array into the

row buffer. Once that data is in the row buffer, the memory

controller can access it at 250 MHz DDR (500M transfers

per second), so the peak bandwidth for a single controller is

4 GB/s.

The memory controller implements the start-gap wear-

leveling and address randomization scheme [15] to evenly

distribute wear across the memory it manages.

C. Implementing the Moneta prototype

We have implemented a Moneta prototype using the BEE3

FPGA prototyping system designed by Microsoft Research for

use in the RAMP project [17]. The BEE3 system holds 64 GB

of 667 MHz DDR2 DRAM under the control of four Xilinx

Virtex 5 FPGAs, and it provides a PCIe link to the host system.

The Moneta design runs at 250 MHz, and we use that clock

speed for all of our results.

Moneta’s architecture maps cleanly onto the BEE3. Each

of the four FPGAs implement a memory controller, while one

also implements the Moneta scheduler and the PCIe interface.

The Moneta ring network runs over the FPGA-to-FGPA links

that the BEE3 provides.

The design is very configurable. It can vary the effective

number of memory controllers without reducing the amount

of memory available, and it supports configurable buffer sizes

in the scheduler and memory controllers.

Moneta memory controllers emulate PCM devices on top

of DRAM using a modified version of the Xilinx Memory

Interface Generator DDR2 controller. It adds latency between

the read address strobe and column address strobe commands

during reads and extends the precharge latency after a write.

The controller can vary the apparent latencies for accesses to

memory from 4 ns to over 500 µs. We use the values from [10]

(48 ns and 150 ns for array reads and writes, respectively) to

model PCM in this work, unless otherwise stated.



The width of memory arrays and the corresponding row

buffers are important factors in the performance and energy

efficiency of PCM memory [10]. The memory controller can

vary the effective width of the arrays by defining a virtual row

size and inserting latencies to model opening and closing rows

of that size. The baseline configuration uses 8 KB rows.

III. BASELINE MONETA PERFORMANCE

We use three metrics to characterize Moneta’s performance.

The first, shown in Figure 2, is a curve of sustained bandwidth

for accesses to randomly selected locations over a range of

access sizes. The second measures the average latency for a

4 KB access to a random location on the device. The final

metric is the number of random access 4 KB IO operations per

second (IOPS) the device can perform with multiple threads.

Our test system is a two-socket, Core i7 Quad (a total of 8

cores) machine running at 2.26 GHz with 8 GB of physical

DRAM and two 8 MB L2 caches. All measurements in this

section are for a bare block device without a file system. We

access Moneta via a low-level block driver and the standard

Linux IO stack configured to use the No-op scheduler, since it

provided the best performance. Each benchmark reports results

for reads, writes, and a 50/50 combination of the two. We use

XDD [18], a configurable IO performance benchmark for these

measurements.

Figure 2 shows bandwidth curves for the baseline Moneta

array and the optimized versions we discuss in future sections.

The “ideal” curve shows the bandwidth of the 2 GB/s PCIe

connection.

The baseline Moneta design delivers good performance,

but there is room for improvement for accesses smaller than

64KB. For these, long access latency limits bandwidth, and

much of this latency is due to software. Figure 3 breaks

down the latency for 4 KB read and write accesses into

14 components. The data show that software accounts for

13 µs of the total 21 µs latency, or 62%. For comparison,

the software overheads for issuing a request to the SSD- and

disk-based RAID arrays described in Section VI are just 17%

and 1%, respectively. Although these data do not include a file

system, other measurements show file system overhead adds

an additional 4 to 5 µs of delay to each request.

These software overheads limit the number of IOPS that

a single processor can issue to 47K, so it would take 10.5

processors to achieve Moneta’s theoretical peak of 500K 4 KB

read IOPS. As a result, IO-intensive applications running on

Moneta with fewer than 11 processors will become CPU

bound before they saturate the PCIe connection to Moneta.

These overheads demonstrate that software costs are the

main limiter on Moneta performance. The next section focuses

on minimizing these overheads.

IV. MINIMIZING SOFTWARE COSTS

Many of the software overheads in Figure 3 result from

legacy optimizations that improve performance for slow, con-

ventional non-volatile storage (i.e. disks). Moneta is faster

than legacy storage systems, so many of those optimizations

are no longer profitable. We begin by removing unprofitable

optimizations, and then move on to optimizing other costs that

limit Moneta’s performance but did not warrant attention for

slow storage. Figures 2 and 3 track the improvement of each

optimization in terms of bandwidth and latency.

A. IO scheduler

Linux IO schedulers sort and merge requests to reduce

latencies and provide fair access to IO resources under load.

Reordering requests can provide significant reductions in la-

tency for devices with non-uniform access latencies such as

disks, but for Moneta it just adds software overheads. Even

the no-op scheduler, which simply passes requests directly to

the driver without any scheduling, adds 2 µs to each request.

This cost arises from context switches between the thread that

requested the operation and the scheduler thread that actually

performs the operation.

Moneta+NoSched bypasses the scheduler completely. It

uses the thread that entered the kernel from user space to

issue the request without a context switch. Removing the

scheduler provides several ancillary benefits, as well. The no-

op scheduler is single-threaded so it removes any parallelism

in request handling. Under Moneta+NoSched each request has

a dedicated thread and those threads can issue and complete

requests in parallel. Moneta+NoSched reduces per-request

latency by 2 µs and increases peak bandwidth by 4× for 4 KB

requests.

B. Issuing and completing IO requests

Moneta+NoSched allows some parallelism, but threads still

contend for access to two locks that protect Moneta’s hard-

ware interface and shared data structures, limiting effective

parallelism in the driver. The first lock protects the hardware

interface during multi-word reads and writes to Moneta’s PIO

interface. The second lock protects shared data structures in

the software.

To safely remove the lock that protects Moneta’s hard-

ware/software interface, we modify the interface so that issu-

ing and completing a request requires a single, atomic PIO

write or read. The baseline interface requires several PIO

writes to issue a request. Moneta+Atomic reduces this to one

by removing bits from the internal address and length fields to

align them to 512 byte boundaries and completely removing

the DMA address field. These changes allow a request to fit

into 64 bits – 8 for the tag, 8 for the command, 16 for the

length, and 32 for the internal address.

To specify the target address for DMA transfers, the Mon-

eta+Atomic driver pre-allocates a DMA buffer for each tag and

writes the host DRAM address of each buffer into a register in

the hardware. The tag uniquely identifies which DMA buffer

to use for each request.

A second change to Moneta’s hardware/software interface

allows multiple threads to process interrupts in parallel. When

a request completes and Moneta raises an interrupt, the driver

checks the status of all outstanding operations by reading the

tag status register. In Moneta+NoSched the tag status register



Label Description
Baseline latency (µs)

Write Read

OS/User OS and userspace overhead 1.98 1.95

OS/User Linux block queue and no-op scheduler 2.51 3.74

Schedule Get request from queue and assign tag 0.44 0.51

Copy Data copy into DMA buffer 0.24/KB -

Issue PIO command writes to Moneta 1.18 1.15

DMA DMA from host to Moneta buffer 0.93/KB -

Ring Data from Moneta buffer to mem ctrl 0.28/KB -

PCM 4 KB PCM memory access 4.39 5.18

Ring Data from mem ctrl to Moneta buffer - 0.43/KB

DMA DMA from Moneta buffer to host - 0.65/KB

Wait Thread sleep during hw 11.8 12.3

Interrupt Driver interrupt handler 1.10 1.08

Copy Data copy from DMA buffer - 0.27/KB

OS/User OS return and userspace overhead 1.98 1.95

Hardware total for 4 KB (accounting for overlap) 8.2 8.0

Software total for 4 KB (accounting for overlap) 13.3 12.2

File system additional overhead 5.8 4.2

T
im

e
 (

u
s
)

0

2

4

6

8

10

12

14

16

18

20

22

B
a
s
e

+
N

o
S

c
h
e
d

+
A

to
m

ic

+
S

p
in

DMA

Ring

PCM

OS/User

Schedule

Copy

Issue

Interrupt

Wait

{
HW costs

{
SW costs

Fig. 3. Latency savings from software optimizations The table breaks down baseline Moneta latency by component. The figure shows that software
optimizations reduce overall access latency by 9 µs between Moneta-Base and Moneta+Spin. Total latency is smaller than the sum of the components, due
to overlap among components.

indicates whether each tag is busy or idle and the driver

must read the register and then update it inside a critical

section protected by a lock. In Moneta+Atomic the tag status

bits indicate whether a request using that tag finished since

the last read of the register, and reading the register clears

it. Atomically reading and clearing the status register allows

threads to service interrupts in parallel without the possibility

of two threads trying to complete the same request.

The second lock protects shared data structures (e.g., the

pool of available tags). To remove that lock, reimplemented

the tag pool data as a lock-free data structure, and allocate

other structures on a per-tag basis.

By removing all the locks from the software stack, Mon-

eta+Atomic reduces latency by 1 µs over Moneta+NoSched

and increases bandwidth by 460 MB/s for 4 KB writes. The

disproportionate gain in bandwidth versus latency results from

increased concurrency.

C. Avoiding interrupts

Responding to the interrupt that signals the completion

of an IO request requires a context switch to wake up the

thread that issued the request. This process adds latency and

limits performance, especially for small requests. Allowing the

thread to spin in a busy-loop rather than sleeping removes

the context switch and the associated latency. Moneta+Spin

implements this optimization.

Spinning reduces latency by 6 µs, but it increases per-

request CPU utilization. It also means that the number of

thread-contexts available bounds the number outstanding re-

quests. Our data show that spinning only helps for write

requests smaller than 4 KB, so the driver spins for those

requests and sleeps for larger requests. Moneta+Spin improves

bandwidth for 512-4096 byte requests by up to 250 MB/s.

D. Other overheads

The remaining overheads are from the system call/return

and the copies to and from userspace. These provide protection

for the kernel. Optimizing the system call interface is outside

the scope of this paper, but removing copies to and from

userspace by directing DMA transfers into userspace buffers

is a well-known optimization in high-performance drivers. For

Moneta, however, this optimization is not profitable, because

it requires sending a physical address to the hardware as

the target for the DMA transfer. This would make issuing

requests atomically impossible. Our measurements show that

this hurts performance more than removing the copy to or

from userspace helps. One solution would be to extend the

processor’s ISA to support 128 bit atomic writes. This would

allow an atomic write to include the full DMA target address.

V. TUNING THE MONETA HARDWARE

With Moneta’s optimized hardware interface and IO stack

in place, we shift our focus to four aspects of the Moneta

hardware – increasing simultaneous read/write bandwidth,

increasing fairness between large and small transfers, adapting

to memory technologies with longer latencies than PCM, and

power consumption.

A. Read/Write bandwidth

Figure 2 shows that Moneta+Spin nearly saturates the

PCIe link for read- and write-only workloads. For the mixed

workload, performance is similar, but performance should be

better since the PCIe link is full duplex.

Moneta+Spin uses a single hardware queue for read and

write requests which prevents it from fully utilizing the PCIe

link. Moneta+2Q solves this problem by providing separate

queues for reads and writes and processing the queues in



Memory Latency

4 ns 64 ns 1 us 16 us 256 us

B
a

n
d

w
id

th
 G

B
/s

0.0

0.5

1.0

1.5

2.0

2.5

3.0

8 Controllers
4 Controllers
2 Controllers
1 Controller

Fig. 4. Managing long-latency non-volatile memories Additional con-
trollers allow Moneta to hide longer memory latencies without sacrificing
bandwidth. The curves measure bandwidth for 4 KB read and write accesses.

round-robin order. When reads and writes are both present,

half of the requests to the DMA engine will be reads and half

will be writes. The DMA engine interleaves the requests to

transfer data in both directions simultaneously.

Figure 2 includes performance for Moneta+2Q. It increases

mixed read/write performance by 75% and consumes 71% of

the total PCIe bandwidth.

The new scheduler adds some complexity to the design and

requires a change to how we implement IO barriers. IO barriers

prevent the storage system from moving requests across the

barrier, and some applications (e.g. file systems) use barriers

to enforce ordering. The baseline Moneta design enforces

this constraint by processing requests in order. Moneta+2Q’s

scheduler keeps track of outstanding barriers and synchronizes

the read and write queue as needed to implement them.

Requests that enter either queue after a barrier will wait for

the barrier to complete before issuing.

B. Balancing bandwidth

Real-world application access patterns are more complex

and varied than the workloads we have tested so far. Multiple

applications will run concurrently placing different demands

on Moneta simultaneously. Ideally, Moneta would prevent one

access or access pattern from unduly degrading performance

for other accesses.

The scheduler in Moneta+2Q processes the requests in each

queue in order, so large requests can significantly delay other

requests in the same queue. For a mixture of large and small

requests, both sizes perform the same number of accesses per

second, but bandwidth will be much smaller for the smaller

accesses. For instance, if four threads issuing 4 KB reads

run in parallel with four threads issuing 512 KB reads, the

4 KB threads realize just 16 MB/s, even though a 4 KB

thread running in isolation can achieve 170 MB/s. The 512 KB

threads receive a total 1.5 GB/s.

To reduce this imbalance, we modified the scheduler to ser-

vice requests in the queue in round-robin order. The scheduler

allocates a single buffer to the request at the front of the queue

and then places the remainder of the request back on the queue

before moving on to the next request. Round-robin queuing

improves performance for the 4 KB threads in our example

by 12×, and reduces large request bandwidth by 190 MB/s.

Aggregate bandwidth remains the same.

The modified scheduler implements barriers by requiring

that all in-progress requests complete before inserting any

operations that follow the barrier into the scheduling queues.

C. Non-volatile memory latency

It is difficult to predict the latencies that non-volatile mem-

ories will eventually achieve, and it is possible that latencies

will be longer than those we have modeled.

Figure 4 explores the impact of memory latency on Mon-

eta’s performance. It plots Moneta+Balance performance with

memory latencies between 4 ns to 128 µs and with 1 to 8

memory controllers. The data show that adding parallelism in

the form of memory controllers can completely hide latencies

of up to 1 µs and that 4 µs memories would only degrade

performance by 20% with eight controllers. The data also

show that at 4 µs, doubling the number of controllers increases

bandwidth by approximately 400 MB/s.

These results suggest that, for bandwidth-centric appli-

cations, it makes sense to optimize non-volatile memories

for parallelism and interface bandwidth rather than latency.

Furthermore, Moneta’s memory controller only accesses a

single bank of memory at a time. A more advanced controller

could leverage inter-bank parallelism to further hide latency.

Flash-based SSDs provide a useful case study: FusionIO’s

ioDrive, a state-of-the-art SSD, has many independent memory

controllers to hide the long latencies of flash memory. In

Section VI we show that while a FusionIO drive can match

Moneta’s performance for large transfers, its latency is much

higher.

D. Moneta power consumption

Non-volatile storage reduces power consumption dramati-

cally compared to hard drives. To understand Moneta’s power

requirements we use the power model in Table I. For the PCM

array, we augment the power model in [10] to account for a

power-down state for the memory devices. Active background

power goes to clocking the PCM’s internal row buffers and

other peripheral circuitry when the chip is ready to receive

commands. Each PCM chip dissipates idle background power

when the clock is off, but the chip is still “on.” The value

here is for a commercially available PCM device [19]. We

model the time to “wake up” from this state based on values

in [19]. The model does not include power regulators or other

on-board overheads.

The baseline Moneta array with four memory controllers,

but excluding the memory itself, consumes a maximum of

3.19 W. For 8 KB transfers, the memory controller bandwidth

limits memory power consumption to 0.6 W for writes, since

transfer time over the DDR pins limits the frequency of array

writes. Transfer time and power for reads is the same, but

array power is lower. The PCIe link limits total array active

memory power to 0.4 W (2 GB/s writes at 16.82 pJ/bit and 2

GB/s reads at 2.47 pJ/bit, plus row buffer power). Idle power



for the array is also small – 0.13 W or 2 mW/GB. Total power

for random 8 KB writes is 3.47 W, according to our model.

For small writes (e.g., 512 bytes), power consumption for

the memory at a single controller could potentially reach

8.34 W since the transfer time is smaller and the controller

can issue writes more frequently. For these accesses, peak

controller bandwidth is 1.4 GB/s. Total Moneta power in this

case could be as high as 11 W. As a result, efficiency for 512

byte writes in terms of MB/s/W drops by 85% compared to

8 KB writes.

The source of this inefficiency is a mismatch between

access size and PCM row width. For small requests, the

array reads or writes more bits than are necessary to satisfy

the requests. Implementing selective writes [10] resolves this

problem and limits per-controller power consumption to 0.6 W

regardless of access size. Selective writes do not help with

reads, however. For reads, peak per-controller bandwidth and

power are 2.6 GB/s and 2.5 W, respectively, for 512 byte

accesses.

An alternative to partial read and writes is to modify the size

of the PCM devices’ internal row buffer. Previous work [10]

found this parameter to be an important factor in the efficiency

of PCM memories meant to replace DRAM. For storage

arrays, however, different optimizations are desirable because

Moneta’s spatial and temporal access patterns are different,

and Moneta guarantees write durability.

Moneta’s scheduler issues requests that are at least 512 bytes

and usually several KB. These requests result in sequential

reads and writes to memory that have much higher spatial

locality than DRAM accesses that access a cache line at a

time. In addition, since accesses often affect an entire row,

there are few chances to exploit temporal locality. This means

that, to optimize efficiency and performance, the row size and

stripe size should be the same and they should be no smaller

than the expected transfer size.

Finally, Moneta’s durability requirements preclude write

coalescing, a useful optimization for PCM-based main mem-

ories [10]. Coalescing requires keeping the rows open to

opportunistically merge writes, but durability requires closing

rows after accesses complete to ensure that the data resides in

non-volatile storage rather than the volatile buffers.

VI. EVALUATION

This section compares Moneta’s performance to other

storage technologies using both microbenchmarks and full-

fledged applications. We compare Moneta to three other high-

performance storage technologies (Table II) – a RAID array

of disks, a RAID array of flash-based SSDs, and an 80GB

FusionIO flash-based PCIe card. We also estimate performance

for Moneta with a 4x PCIe link that matches the peak

bandwidth of the other devices.

We tuned the performance of each system using the IO

tuning facilities available for Linux, the RAID controller, and

the FusionIO card. Each device uses the best-performing of

Linux’s IO schedulers: For RAID-disk and RAID-SSD the

no-op scheduler performs best. The FusionIO card uses a

Component Idle Peak

Scheduler & DMA [20] 0.3 W 1.3 W

Ring [21] 0.03 W 0.06 W

Scheduler buffers [22] 1.26 mW 4.37 mW

Memory controller [21] 0.24 W 0.34 W

Mem. ctrl. buffers [22] 1.26 mW 4.37 mW

PCIe [20] 0.12 W 0.4 W

PCM write [10] 16.82 pJ/bit

PCM read [10] 2.47 pJ/bit

PCM buffer write [10] 1.02 pJ/bit

PCM buffer read [10] 0.93 pJ/bit

PCM background [10, 23] 264 µW/die 20 µW/bit

Table I. Moneta power model The component values for the power model
come from datasheets, Cacti [22], [21], and the PCM model in [10]

Name Bus Description

RAID-Disk PCIe 1.1 ×4 4×1TB hard drives.

1 GB/s RAID-0 PCIe controller.

RAID-SSD SATA II ×4 4×32GB X-25E SSDs.

1.1 GB/s RAID-0 Software RAID.

FusionIO PCIe 1.1 ×4 Fusion-IO 80GB PCIe

1 GB/s SSD

Moneta-4x PCIe 1.1 ×4 See text.

1 GB/s

Moneta-8x PCIe 1.1 ×8 See text.

2 GB/s

Table II. Storage arrays We compare Moneta to a variety of existing disk
and SSD technologies. Bus bandwidth is the peak bandwidth each device’s
interface allows.

custom driver which bypasses the Linux IO scheduler just as

Moneta’s does. We use software RAID for the SSD rather than

hardware because our measurements and previous studies [4]

show better performance for that configuration.

A. Microbenchmarks

Figure 5 and Table III contain the results of the comparison.

For bandwidth, Moneta+Spin outperforms the other arrays

by a wide margin, although for large transfer sizes most of

this benefit is due to its faster PCIe link. For mixed reads

and writes, Moneta delivers between 8.9× (vs. FusionIO) and

616× (vs. disk) more bandwidth. For Moneta+Spin-4x, the

gains are smaller (4.4-308×). For mixed 512 KB read and

write accesses Moneta is 32× faster than disk and 4.5× faster

than FusionIO. The bandwidth gains relative to the SSDs vary

less widely – between 7.6 and 89× for Moneta and between

3.8 and 44× for Moneta+Spin-4x.

Moneta also delivers large gains in terms of IOPS. Moneta

sustains between 364 and 616× more 4 KB IOPS than disk

and between 4 and 8.9× more than FusionIO. The gains for

small transfers are much larger: Moneta achieves 1.1M 0.5 KB

IOPS, or 10× the value for FusionIO.

Table III also shows the number of instructions each device

requires to perform a 4 KB read or write request. Moneta’s op-



Read

0.5 2 8 32 128 512

B
a

n
d

w
id

th
 (

G
B

/s
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Write

Random Request Size (KB)

0.5 2 8 32 128 512

Disk
SSD
FusionIO
Moneta+Spin−4x
Moneta+Spin
Ideal 50% Read, 50% Write

0.5 2 8 32 128 512

Fig. 5. Storage array performance comparison Small request sizes measure random access performance, while larger transfers measure sequential accesses.
Moneta+Spin-4x conservatively models a 1GB/s PCIe connection and matches or outperforms the other storage arrays.

4KB IOPS 512 IOPS Instructions per 4 KB IOP

Read Write Read Write Read Write

RAID-Disk 863 1,070 869 1,071 32,042 34,071

RAID-SSD 5,256 11,714 11,135 17,007 31,251 32,540

FusionIO 92,225 70,579 132,826 71,338 49,369 60,147

Moneta+Spin 368,534 389,859 1,156,779 1,043,793 17,364 20,744

Table III. IO operation performance Moneta’s combination of fast storage and optimized software stack allow it to perform 1.1M 512 byte IOPS and
370K 4 KB IOPS. Software optimizations also reduces the number of instructions per IO operations by between 38 and 47%.

timized driver requires between 38 and 47% fewer instructions

than RAID-Disk and RAID-SSD. The reduction relative to the

baseline Moneta software stack is similar. As a result, it takes

five processors (rather than eleven) to fully utilize the Moneta

array. FusionIO’s driver requires between 1.4 and 1.8× more

instructions than the RAID arrays because it caches device

meta-data to increase performance.

B. Applications

Moneta’s optimized hardware interface and software stack

eliminates most of the operating system overheads that limited

the performance for raw device access. Here, we explore

how that performance translates to the application level and

highlight where further software optimizations may be useful.

Table IV describes the workloads we use in this evalua-

tion. They fall into three categories that represent potential

uses for Moneta: IO benchmarks that use typical system

calls to access storage, database applications that implement

transaction systems with strong durability guarantees, and

paging applications that use storage to back virtual memory.

Whenever practical and possible, we use direct IO to bypass

the system buffer cache for Moneta and FusionIO, since it

improves performance. Adding the ability to apply this setting

without modifying application source code would be a useful

optimization.

Table V shows the performance of the storage arrays and

the speedup of Moneta over each array. All data use XFS [24]

as the underlying file system because it efficiently supports

parallel file access.

The performance of the IO benchmarks improves signifi-

cantly running on Moneta: On average, Moneta is 9.48× faster

than RAID-disk, 2.84× faster than RAID-SSD, and 2.21×
faster than FusionIO. However, the performance of XDD-

Random on Moneta is much lower when reads and writes

go through the file system instead of going directly to the

raw block device. This suggests that further optimizations

to the file system may provide benefits for Moneta, just as

removing device driver overheads did. Performance on Build

is especially disappointing, but this is in part because there is

no way to disable the file buffer cache for that workload.

The results for database applications also highlight the need

for further software optimizations. Databases use complex

buffer managers to reduce the cost of IO, but our experience

with Moneta to date suggests reevaluating those optimizations.

The results for Berkeley DB bear this out: Berkeley DB

is simpler than the PostgreSQL and MySQL databases that

OLTP and PTFDB use, and that simplicity may contribute to

Moneta’s larger benefit for Berkeley DB.

For the paging applications, Moneta is on average 7.33×,

1.61×, and 3.01× faster than RAID-Disk, RAID-SSD, and

FusionIO, respectively. For paging applications, Moneta is

on average 2.75× faster than the other storage arrays. Not

surprisingly, the impact of paging to storage depends on the

memory requirements of the program, and this explains the



Name Data footprint Description

IO benchmarks

XDD-Sequential-Raw 55 GB 4MB sequential reads/writes from 16 threads through the raw block device

XDD-Sequential-FS 55 GB 4MB sequential reads/writes from 16 threads through the file system

XDD-Random-Raw 55 GB 4KB random reads/writes from 16 threads through the raw block device

XDD-Random-FS 55 GB 4KB random reads/writes from 16 threads through the file system

Postmark ≈0.3-0.5 GB Models an email server

Build 0.5 GB Compilation of the Linux 2.6 kernel

Database applications

PTFDB 50 GB Palomar Transient Factory database realtime transient sky survey queries

OLTP 8 GB Transaction processing using Sysbench running on a MySQL database

Berkeley-DB Btree 4 GB Transactional updates to a B+tree key/value store

Berkeley-DB Hashtable 4 GB Transactional updates to a hash table key/value store

Paging applications

BT 11.3 GB Computational fluid dynamics simulation

IS 34.7 GB Integer sort with the bucket sort algorithm

LU 9.4 GB LU matrix decomposition

SP 11.9 GB Simulated CFD code solves Scalar-Pentadiagonal bands of linear equations

UA 7.6 GB Solves a heat transfer problem on an unstructured, adaptive grid

Table IV. Benchmarks and applications We use a total of fifteen benchmarks and workloads to compare Moneta to other storage technologies.

Workload
Raw Performance Speedup of Moneta vs.

RAID-Disk RAID-SSD FusionIO Moneta RAID-Disk RAID-SSD FusionIO

IO benchmarks

Postmark 4,080.0 s 46.8 s 36.7 s 27.4 s 149.00× 1.71× 1.34×
Build 80.9 s 36.9 s 37.6 s 36.9 s 2.19× 1.00× 1.02×

XDD-Sequential-Raw 244.0 MB/s 569.0 MB/s 642.0 MB/s 2,932.0 MB/s 12.01× 5.15× 4.57×
XDD-Sequential-FS 203.0 MB/s 564.0 MB/s 641.0 MB/s 2,773.0 MB/s 13.70× 4.92× 4.35×
XDD-Random-Raw 1.8 MB/s 32.0 MB/s 142.0 MB/s 1,753.0 MB/s 973.89× 54.78× 12.35×
XDD-Random-FS 3.3 MB/s 30.0 MB/s 118.0 MB/s 261.0 MB/s 80.40× 8.70× 2.21×

Harmonic mean 9.48× 2.84× 2.21×

Database applications

PTFDB 68.1 s 5.8 s 2.3 s 2.1 s 32.60× 2.75× 1.11×
OLTP 304.0 tx/s 338.0 tx/s 665.0 tx/s 799.0 tx/s 2.62× 2.36× 1.20×

Berkeley-DB BTree 253.0 tx/s 6,071.0 tx/s 5,975.0 tx/s 14,884.0 tx/s 58.80× 2.45× 2.49×
Berkeley-DB HashTable 191.0 tx/s 4,355.0 tx/s 6,200.0 tx/s 10,980.0 tx/s 57.50× 2.52× 1.77×

Harmonic mean 8.95× 2.51× 1.48×

Paging applications

BT 84.8 MIPS 1,461.0 MIPS 706.0 MIPS 2,785.0 MIPS 32.90× 1.90× 3.94×
IS 176.0 252.0 252.0 351.0 2.00× 1.39× 1.39×
LU 59.1 1,864.0 1,093.0 4,298.0 72.70× 2.31× 3.93×
SP 87.0 345.0 225.0 704.0 8.08× 2.04× 3.13×
UA 57.2 3,775.0 445.0 3,992.0 69.80× 1.06× 8.97×

Harmonic mean 7.33× 1.61× 3.01×

Table V. Workload performance We run our fifteen benchmarks and applications on the RAID-Disk, RAID-SSD, FusionIO, and Moneta storage arrays,
and we show the speedup of Moneta over the other devices.



large variation across the five applications. Comparing the per-

formance of paging as opposed to running these applications

directly in DRAM shows that Moneta reduces performance

by only 5.90× as opposed to 14.7× for FusionIO, 13.3× for

RAID-SSD, and 83.0× for RAID-Disk. If additional hard-

ware and software optimizations could reduces this overhead,

Moneta-like storage devices could be come a viable option for

increasing effective memory capacity.

VII. RELATED WORK

Software optimizations and scheduling techniques for IO

operations for disks and other technologies has been the

subject of intensive research for many years [25–31]. The

main challenge in disk scheduling is minimizing the impact of

the long rotational and seek time delays. Since Moneta does

not suffer from these delays, the scheduling problem focuses

on exploiting parallelism within the array and minimizing

hardware and software overheads.

Recently, scheduling for flash-based solid-state drives has

received a great deal of attention [32–34]. These schedulers

focus on reducing write overheads, software overheads, and

exploiting parallelism within the drive. The work in [35]

explores similar driver optimizations for a PCIe-attached,

flash-based SSD (although they do not modify the hardware

interface) and finds that carefully-tuned software scheduling

is useful in that context. Our results found that any addi-

tional software overheads hurt Moneta’s performance, and that

scheduling in hardware is more profitable.

In the last decade, there have also been several proposals

for software scheduling policies for MEMS-based storage ar-

rays [36–40]. Other researchers have characterized SSDs [41–

43] and evaluated their usefulness on a range of applica-

tions [44–47]. Our results provide a first step in this direction

for faster non-volatile memories.

Researchers have developed a range of emulation, simu-

lation, and prototyping infrastructures for storage systems.

Most of these that target disks are software-based [41, 48–

51]. Recently, several groups have built hardware emulation

systems for exploring flash-based SSD designs: The work

in [52–54] implements flash memory controllers in one or

more FPGAs and attach them to real flash devices. Moneta

provides a similar capability for fast non-volatile memories,

but it emulates the memories using the memory controller we

described in Section II. The work in [52] uses the same BEE3

platform that Moneta uses.

VIII. CONCLUSION

We have presented Moneta, a storage array architecture for

advanced non-volatile memories. We emulate Moneta using

FPGAs and modified memory controllers that can model PCM

memory using DRAM. A series of software and hardware

interface optimizations significantly improves Moneta’s per-

formance. Our exploration of Moneta designs shows that opti-

mizing PCM for storage applications requires a different set of

trade-offs than optimizing it as a main memory replacement.

In particular, memory array latency is less critical for storage

applications if sufficient parallelism is available, and durability

requirements prevent some optimizations.

Optimizations to Moneta’s hardware and software reduce

software overheads by 62% for 4 KB operations, and enable

sustained performance of 1.1M 512-byte IOPS and 541K 4 KB

IOPS with a maximum sustained bandwidth of 2.8 GB/s.

Moneta’s optimized IO stack completes a single 512-byte IOP

in 9 µs. Moneta speeds up a range of file system, paging, and

database workloads by up to 8.7× compared to a state-of-

the-art flash-based SSD with harmonic mean of 2.1×, while

consuming a maximum power of 3.2 W.

REFERENCES

[1] “Wd velociraptor: Sata hard drives,”
http://www.wdc.com/wdproducts/library/SpecSheet/ENG/2879-
701284.pdf.

[2] “Ibm 3340 disk storage unit,” http://www-
03.ibm.com/ibm/history/exhibits/storage/storage 3340.html.

[3] “Intel x58 express chipset product brief,” 2008,
http://www.intel.com/products/desktop/chipsets/x58/x58-overview.htm.

[4] J. He, A. Jagatheesan, S. Gupta, J. Bennett, and A. Snavely, “Dash: a
recipe for a flash-based data intensive supercomputer,” New York, NY,
USA, 2010.

[5] B. Dieny, R. Sousa, G. Prenat, and U. Ebels, “Spin-dependent
phenomena and their implementation in spintronic devices,” VLSI

Technology, Systems and Applications, 2008. VLSI-TSA 2008.

International Symposium on, pp. 70–71, April 2008. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=04530803

[6] Y. Ho, G. Huang, and P. Li, “Nonvolatile memristor memory: Device
characteristics and design implications,” in Computer-Aided Design - Di-

gest of Technical Papers, 2009. ICCAD 2009. IEEE/ACM International

Conference on, 2-5 2009, pp. 485 –490.
[7] S. Parkin, “Racetrack memory: A storage class memory based on

current controlled magnetic domain wall motion,” in Device Research

Conference, 2009. DRC 2009, 22-24 2009, pp. 3 –6.
[8] T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C.-L. Cheung, and

C. M. Lieber, “Carbon Nanotube-Based Nonvolatile Random Access
Memory for Molecular Computing,” Science, vol. 289, no. 5476,
pp. 94–97, 2000. [Online]. Available: http://www.sciencemag.org/cgi/
content/abstract/289/5476/94

[9] M. J. Breitwisch, “Phase change memory,” Interconnect Technology

Conference, 2008. IITC 2008. International, pp. 219–221, June
2008. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?
arnumber=04546972

[10] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change
memory as a scalable dram alternative,” in ISCA ’09: Proceedings of the

36th annual international symposium on Computer architecture. New
York, NY, USA: ACM, 2009, pp. 2–13.

[11] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high
performance main memory system using phase-change memory
technology,” International Symposium on Computer Architecture, June
2009. [Online]. Available: http://users.ece.utexas.edu/∼qk/papers/pcm.
pdf

[12] G. Dhiman, R. Ayoub, and T. Rosing, “Pdram: a hybrid pram and dram
main memory system,” in DAC ’09: Proceedings of the 46th Annual

Design Automation Conference. New York, NY, USA: ACM, 2009,
pp. 664–469.

[13] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy efficient
main memory using phase change memory technology,” in ISCA ’09:

Proceedings of the 36th annual international symposium on Computer

architecture. New York, NY, USA: ACM, 2009, pp. 14–23.
[14] S. Cho and H. Lee, “Flip-n-write: a simple deterministic technique to

improve pram write performance, energy and endurance,” in MICRO 42:

Proceedings of the 42nd Annual IEEE/ACM International Symposium on

Microarchitecture. New York, NY, USA: ACM, 2009, pp. 347–357.
[15] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras,

and B. Abali, “Enhancing lifetime and security of pcm-based main
memory with start-gap wear leveling,” in MICRO 42: Proceedings of the

42nd Annual IEEE/ACM International Symposium on Microarchitecture.
New York, NY, USA: ACM, 2009, pp. 14–23.



[16] A. Huffman and J. Clark, “Serial ata native command queuing.”
[17] “The ramp project,” http://ramp.eecs.berkeley.edu/index.php?index.
[18] “Xdd version 6.5,” http://www.ioperformance.com/.
[19] Elpida, “Elpida ddr2 sdram ede1104afse datasheet,” 2008,

http://www.elpida.com/pdfs/E1390E30.pdf.
[20] Intel, “Intel system controller hub datasheet,” April 2008, http://

download.intel.com/design/chipsets/embedded/datashts/319537.pdf.
[21] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and

N. P. Jouppi, “McPAT: An Integrated Power, Area, and Timing Modeling
Framework for Multicore and Manycore Architectures,” in MICRO 42:

Proceedings of the 42nd Annual IEEE/ACM International Symposium

on Microarchitecture, 2009, pp. 469–480.
[22] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi, “Cacti

5.1,” HP Labs, Palo Alto, Tech. Rep. HPL-2008-20, 2008. [Online].
Available: http://www.hpl.hp.com/techreports/2008/HPL-2008-20.html

[23] Numonyx.
[24] S. G. International, “Xfs: A high-performance journaling filesystem,”

http://oss.sgi.com/projects/xfs.
[25] Y. J. Nam and C. Park, “Design and evaluation of an efficient

proportional-share disk scheduling algorithm,” Future Gener. Comput.

Syst., vol. 22, no. 5, pp. 601–610, 2006.
[26] A. Thomasian and C. Liu, “Disk scheduling policies with lookahead,”

SIGMETRICS Perform. Eval. Rev., vol. 30, no. 2, pp. 31–40, 2002.
[27] B. L. Worthington, G. R. Ganger, and Y. N. Patt, “Scheduling algorithms

for modern disk drives,” in SIGMETRICS ’94: Proceedings of the

1994 ACM SIGMETRICS conference on Measurement and modeling of

computer systems. New York, NY, USA: ACM, 1994, pp. 241–251.
[28] M. Seltzer, P. Chen, and J. Ousterhout, “Disk scheduling revisited,” in

Proceedings of the 1990 Winter Usenix, 1990, pp. 313–324.
[29] T. J. Teorey and T. B. Pinkerton, “A comparative analysis of disk

scheduling policies,” Commun. ACM, vol. 15, no. 3, pp. 177–184, 1972.
[30] P. J. Shenoy and H. M. Vin, “Cello: a disk scheduling framework for

next generation operating systems,” SIGMETRICS Perform. Eval. Rev.,
vol. 26, no. 1, pp. 44–55, 1998.

[31] S. W. Ng, “Improving disk performance via latency reduction,” IEEE

Trans. Comput., vol. 40, no. 1, pp. 22–30, 1991.
[32] J. Kim, Y. Oh, E. Kim, J. Choi, D. Lee, and S. H. Noh, “Disk schedulers

for solid state drivers,” in EMSOFT ’09: Proceedings of the seventh ACM

international conference on Embedded software. New York, NY, USA:
ACM, 2009, pp. 295–304.

[33] M. Dunn and A. L. N. Reddy, “A new i/o scheduler for solid state
devices,” Department of Electrical and Computer Engineering Texas
A&M University, Tech. Rep. TAMU-ECE-2009-02-3, 2009.

[34] Y.-B. Chang and L.-P. Chang, “A self-balancing striping scheme for
nand-flash storage systems,” in SAC ’08: Proceedings of the 2008 ACM

symposium on Applied computing. New York, NY, USA: ACM, 2008,
pp. 1715–1719.

[35] E. Seppanen, M. T. OKeefe, and D. J. Lilja, “High performance solid
state storage under linux,” in Proceedings of the 30th IEEE Symposium

on Mass Storage Systems, 2010.
[36] E. Lee, K. Koh, H. Choi, and H. Bahn, “Comparison of i/o schedul-

ing algorithms for high parallelism mems-based storage devices,” in
SEPADS’09: Proceedings of the 8th WSEAS International Conference

on Software engineering, parallel and distributed systems. Stevens
Point, Wisconsin, USA: World Scientific and Engineering Academy and
Society (WSEAS), 2009, pp. 150–155.

[37] H. Bahn, S. Lee, and S. H. Noh, “P/pa-sptf: Parallelism-aware request
scheduling algorithms for mems-based storage devices,” Trans. Storage,
vol. 5, no. 1, pp. 1–17, 2009.

[38] S. W. Schlosser, J. L. Griffin, D. F. Nagle, and G. R. Ganger, “Designing
computer systems with mems-based storage,” SIGOPS Oper. Syst. Rev.,
vol. 34, no. 5, pp. 1–12, 2000.

[39] M. Uysal, A. Merchant, and G. A. Alvarez, “Using mems-based storage
in disk arrays,” in FAST ’03: Proceedings of the 2nd USENIX Conference

on File and Storage Technologies. Berkeley, CA, USA: USENIX
Association, 2003, pp. 89–101.

[40] I. Dramaliev and T. Madhyastha, “Optimizing probe-based storage,” in
FAST ’03: Proceedings of the 2nd USENIX Conference on File and

Storage Technologies. Berkeley, CA, USA: USENIX Association, 2003,
pp. 103–114.

[41] K. El Maghraoui, G. Kandiraju, J. Jann, and P. Pattnaik, “Modeling
and simulating flash based solid-state disks for operating systems,”
in WOSP/SIPEW ’10: Proceedings of the first joint WOSP/SIPEW

international conference on Performance engineering. New York, NY,
USA: ACM, 2010, pp. 15–26.

[42] C. Dirik and B. Jacob, “The performance of pc solid-state disks (ssds)
as a function of bandwidth, concurrency, device architecture, and system
organization,” in ISCA ’09: Proceedings of the 36th annual international

symposium on Computer architecture. New York, NY, USA: ACM,
2009, pp. 279–289.

[43] F. Chen, D. A. Koufaty, and X. Zhang, “Understanding intrinsic char-
acteristics and system implications of flash memory based solid state
drives,” in SIGMETRICS ’09: Proceedings of the eleventh international

joint conference on Measurement and modeling of computer systems.
New York, NY, USA: ACM, 2009, pp. 181–192.

[44] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and A. Rowstron,
“Migrating server storage to ssds: analysis of tradeoffs,” in EuroSys ’09:

Proceedings of the 4th ACM European conference on Computer systems.
New York, NY, USA: ACM, 2009, pp. 145–158.

[45] S.-W. Lee, B. Moon, C. Park, J.-M. Kim, and S.-W. Kim, “A case for
flash memory ssd in enterprise database applications,” in SIGMOD ’08:

Proceedings of the 2008 ACM SIGMOD international conference on

Management of data. New York, NY, USA: ACM, 2008, pp. 1075–
1086.

[46] S. Chen, “Flashlogging: exploiting flash devices for synchronous logging
performance,” in SIGMOD ’09: Proceedings of the 35th SIGMOD

international conference on Management of data. New York, NY, USA:
ACM, 2009, pp. 73–86.

[47] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan,
and V. Vasudevan, “Fawn: a fast array of wimpy nodes,” in SOSP ’09:

Proceedings of the ACM SIGOPS 22nd symposium on Operating systems

principles. New York, NY, USA: ACM, 2009, pp. 1–14.
[48] G. Ganger, B. Worthington, and Y. Patt, “Disksim,”

http://www.pdl.cmu.edu/DiskSim/.
[49] C. Ruemmler and J. Wilkes, “An introduction to disk drive modeling,”

Computer, vol. 27, no. 3, pp. 17–28, 1994.
[50] J. L. Griffin, J. Schindler, S. W. Schlosser, J. C. Bucy, and G. R. Ganger,

“Timing-accurate storage emulation,” in FAST ’02: Proceedings of the

1st USENIX Conference on File and Storage Technologies. Berkeley,
CA, USA: USENIX Association, 2002, p. 6.

[51] D. Kotz, S. B. Toh, and S. Radhakrishnan, “A detailed simulation model
of the hp 97560 disk drive,” Dartmouth College, Hanover, NH, USA,
Tech. Rep., 1994.

[52] J. D. Davis and L. Zhang, “Frp: A nonvolatile memory research platform
targeting nand flash,” in Proceedings of First Workshop on Integrating

Solid-State Memory in the Storage Hierarchy, 2009.
[53] S. Lee, K. Fleming, J. Park, K. Ha, A. M. Caulfield, S. Swanson, Arvind,

and J. Kim, “Bluessd: An open platform for cross-layer experiments
for nand flash-based ssds,” in Proceedings of The 5th Workshop on

Architectural Research Prototyping, 2010.
[54] L. M. Grupp, A. M. Caulfield, J. Coburn, J. Davis, and S. Swanson,

“Beyond the datasheet: Using test beds to probe non-volatile memories’
dark secrets,” in To appear: IEEE Globecom 2010 Workshop on Ap-

plication of Communication Theory to Emerging Memory Technologies

(ACTEMT 2010), 2010.


