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Abstract—Emerging non-volatile memory (NVM) technolo-
gies have DRAM-like latency with storage-like density, offering
unique capability to analyze large data sets significantly faster
than flash or disk storage. However, the hybrid nature of these
NVM technologies such as phase-change memory (PCM) make
it difficult to use them to best advantage in the memory-storage
hierarchy. These NVMs lack the fast write latency required of
DRAM and are thus not suitable as DRAM equivalent on
the memory bus, yet their low latency even in random access
patterns is not easily exploited over an I/O bus.

In this work, we describe an FPGA-based system to execute
application-specific operations in the NVM controller and
evaluate its performance on two microbenchmarks and a key-
value store. Our system Minerva1extends the conventional solid-
state drive (SSD) architecture to offload data or I/O intensive
application code to the SSD to exploit the low latency and
high internal bandwidth of NVMs. Performing computation in
the FPGA-based NVM storage controller significantly reduces
data traffic between the host and storage and serves as an
offload engine for data analysis workloads. A runtime library
enables the programmer to offload computations to the SSD
without dealing with the complications of the underlying
architecture and inter-controller communication management.
We have implemented a prototype of Minerva on the BEE3
FPGA system. We compare the performance of Minerva to
a state of the art PCIe-attached PCM-based SSD. Minerva
improves performance by an order of magnitude on two
microbenchmarks. Minerva based key-value store performs up
to 5.2 M get operations/s and 4.0 M set operations/s which is
7.45⇥ and 9.85⇥ higher than the PCM-based SSD that uses the
conventional I/O architecture. This huge improvement comes
from the reduction of data transfer between the storage to the
host and the FPGA-based data processing in the SSD.

Index Terms—storage systems, non-volatile memory, solid-
state drive, I/O performance, flash memory, phase-change
memory, spin-transfer torque memory, FPGA, Virtex-5 and
big data applications.

I. INTRODUCTION

In the age of Big Data, data analysis workloads are
increasingly affected by bottlenecks in the memory-storage
hierarchy. Enterprise and scientific data analysis applications
employ complex algorithms that require efficient techniques,
tools and infrastructure to better interact with petabytes
of data. For example, semantic graphs representing social
networks of interest to the Department of Homeland Secu-
rity will have 1015 entities [18]. Execution time of such
data analysis algorithms is dominated by access time to

1“Minerva” is the Roman goddess of intelligence.

disk and flash. Emerging fast, byte-addressable non-volatile
memory (NVM) technologies, such as phase-change mem-
ory (PCM) [5] approach DRAM-like performance with the
additional benefits of lower power consumption and higher
density as process technology scales. Despite greatly im-
proved latency compared to disk, the asymmetric read/write
latencies and wear characteristics of these devices make
them less suitable for memory bus attachment than I/O
bus (e.g., PCIe, SATA etc.). Also, PCIe facilitates better
scalability as compared to parallel memory bus interface.
However, existing block-based storage I/O interfaces cannot
fully utilize these random-access memories, and become
potential bottlenecks for future computing systems using
NVM. To eliminate I/O bottlenecks and better utilize NVM
capabilities, we propose a novel FPGA-based SSD archi-
tecture, called Minerva. Minerva moves computation close
to data to greatly reduce the amount of data that must
travel across a slow I/O interface (e.g. PCIe) through main
memory and caches to reach the compute units. Creating
a capability to compute in FPGA storage controllers is
particularly timely as commodity SSD controllers are often
implemented on FPGA and the near-DRAM read latency of
PCM provide a compelling incentive to place computation
close to the storage devices.

In this paper we describe the design and implementation
of the Minerva compute-capable NVM storage controller.
Our controller extends one of the first PCM storage array
controllers Moneta-D[7], by incorporating a storage pro-
cessor module directly connected to each memory con-
troller. We describe the hardware infrastructure to schedule
and dispatch compute kernels. Our design uses a generic
command/status mechanism to push computation to storage
controllers and retrieve results. A runtime library enables
the programmer to offload computations to the SSD without
dealing with many of the complications of the underlying ar-
chitecture and inter-controller communication management.

Minerva is suitable for large scale applications that rather
than reusing data, stream over large data structures or
randomly access different locations. As a result, they make
poor use of existing memory hierarchies and perform poorly
on the conventional system due to a large I/O overhead.

We have built a prototype of Minerva on the BEE3 FPGA
prototyping system [4] and evaluate the performance of
Minerva on two microbenchmarks and a key-value store.



TABLE I
MEMORY TECHNOLOGY SUMMARY [16], [19], [22]

Technology Density Latency Energy Idle
Read Write Read Write Power/GB

Flash 4 F2 25 us 200 us 250 pJ/bit 250 pJ/bit 10 mW
PCM 4 F2 67.5 ns 215 ns 3.4 pJ/bit 17.84 pJ/bit 1 mW

DRAM 4 F2 25 ns 25 ns 2.4 pJ/bit 2.4 pJ/bit 100 mW

We compare the performance with Moneta-D and find that
Minerva outperforms Moneta-D by an order of magnitude
on two microbenchmarks. A Minerva based key-value store
performs up to 5.2 M get operations/s and 4.0 M set
operations/s which is 7.45⇥ and 9.85⇥ higher than Moneta-
D. This huge improvement comes from the reduction of data
transfer from the storage to the host, the elimination of I/O,
and the efficient data processing in the SSD.

The rest of the paper is organized as follows. Section II
presents emerging NVM technologies and motivations. Sec-
tion III describes the Minerva architecture, the programming
model and implementation. Section IV presents the results
of our experiments. Section V discusses related work and
Section VI concludes the paper.

II. BACKGROUND AND MOTIVATION

In the last five decades, the disk has been the basic unit
of persistent storage for small and large scale computing
systems. Disks are highly reliable but generally suffer from
poor latency and bandwidth, especially relative to processor
and main memory advances. Recently, flash based PCIe-
attached SSDs have become popular (e.g. FusionIO [14] and
Virident [26] as representative of the high end SSDs) and
are significantly faster (100⇥) than disk but still have slow
erase, and high write latency. Emerging NVM technologies
such as phase change memory (PCM) and spin-transfer
torque (STT) are narrowing the performance gap between
the storage and the main memory and have potential, with
density improvements, to replace existing storage technolo-
gies in future. Table I briefly summarizes density, latency
and energy dissipation of different memory technologies.

Phase change memory (PCM) is the most promising of the
upcoming NVM technologies [5]. It exploits the property of
chalcogenide glass to switch between two states, amorphous
(high-resistance) and crystalline (low-resistance), with ap-
plication of current pulses. The crystalline state achieves by
heating above crystallization temperature using a moderate,
long current pulse, and logically stores “1”. The amorphous
state achieves by high, short current pulse and logically
stores “0”. A small read current (less than 100uA) used to
sense data stored in a cell by measuring its resistance thus
PCM consumes very small power for read. PCM approaches
DRAM-like performance with lower power consumption
and higher density as process technology scales. Despite
this promise, PCM suffers from long write latency, high
energy writes and limited write endurance (on the order
of 108). Recent studies [19], [24], [23], [13] proposed
several hardware and software enhancements such as various
wear-leveling methods, new row buffer design, selective
writes, (DRAM/PCM) hybrid memory architecture, hot page
swapping and write buffers to overcome PCM technology
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Fig. 1. The Minerva architecture builds on Moneta-D (gray boxes) with
an augmented scheduler and storage processors(white boxes).
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Fig. 2. The storage processor components are responsible for running
application code in the storage array. Each storage processor connects to a
local memory controller to operate on locally stored data. It also connected
with a ring network to communicate with other components.

limitations and make them a viable option for charge-based
memory replacement such as DRAM and flash. The Minerva
architecture is motivated by the desire to retain the con-
ventional I/O bus storage architecture while simultaneously
exploiting the low access latency (300⇥ faster than flash)
and byte addressability of PCM within the storage array by
performing application-specific computation in storage.

The Moneta project [6] designed and implemented an
SSD storage controller optimized for small, random access
to byte addressable PCM. The controller was implemented
on the BEE3 prototyping platform with emulated PCM
latencies to access data in the 64 GB DRAM. Moneta was
further optimized to perform fast file system operations such
as metadata access and update, the Moneta-D [7], which is
the base system upon which Minerva is implemented. the
Onyx [3] storage array replaces the DRAM in the BEE3
with first generation PCM DIMMs.

III. MINERVA

This section describes Minerva’s architecture, program-
ming model and prototype implementation.

A. Minerva Architecture
The Minerva architecture improves performance by of-

floading application-specific computations to the storage
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Fig. 3. The computational write request extends the semantics of
memory write to initiate application specific commands in the storage
processor.

array. It exposes the high-bandwidth and low-latency NVM
accesses to user applications and reduces data traffic across
the I/O interface. Figure 1 shows the architecture of the
Minerva. We extended Moneta-D [7] (gray boxes in Fig-
ure 1) with a request scheduler and storage processors (white
boxes in Figure 1). The PCIe interface and request scheduler
reside on FPGA 0 of the 4-FPGA ring-connected BEE3.
Each FPGA also holds a memory controller and associated
storage processor. Minerva has four major components:
request scheduler, storage processor, network and memory
controller. The request scheduler receives requests from the
host using a Programed IO (PIO) via the PCIe channel and
places them into a FIFO queue. The host issues a computa-
tional write request to trigger application-specific processing
on a storage processor and a computational read request
to receive a response from the storage processor. Normal
read and write I/O requests are passed to the I/O processor.
Each memory controller connects with dual-rank DIMMs
using the DDR2 interface. The network provides a packet
based communication among the request scheduler, storage
processors and memory controllers, and has bandwidth and
round trip latency of 4 GB/s and 88 ns respectively. We
describe each component in more detail below.

Request scheduler The request scheduler receives an
I/O or computational request from the host. Each request
has an additional field called type to distinguish between
conventional I/O or computational request. The request
scheduler has three main components: request controller,
I/O processor and compute processor. The request controller
retrieves each request from the FIFO, checks the opcode and
routes requests between the compute processor and the I/O
processor based on opcode and manages shared resources.
The I/O processor handles the conventional read and write
I/O requests. The compute processor handles computational
requests, which specify the storage processor (SP) ID and
the memory address information to dispatch computations
to the SP. Although the emulated PCM is divided into four
16 GB groups, there is a global 64 GB address space, and
file data is striped across the four memory banks in 8 KB
slices.

Figure 3 shows the computational write request. It has
following fields.

• Request Type - identifies the type of request such as
read or write

• SP ID - identifies the storage processor
• Memory Address - identifies the command location
• Command - holds application related information.

When the host sends a computational write request to
start computation in the storage, the compute processor
issues a DMA command to transfer request data from the
host’s memory into its buffer. When the DMA transfer
completes, the compute processor checks the status of the
target SP. If the SP has adequate space to receive request,
the compute processor dispatches the request via the ring
network; otherwise it waits until sufficient space is available.
Once the scheduler gets acknowledgment from the SP, it
raises an interrupt and sets a tag status bit. The operating
system receives the interrupt and completes the request by
reading and then clearing the status bit using PIO operation.
The computational read requests are handled similarly but
in the reverse direction.
Storage Processor The storage processor (SP), shown in
Figure 2, acts as a coprocessor to the host. The storage pro-
cessor communicates with the local memory controller using
the local interface (bandwidth 4 GB/s). It communicates
with the request scheduler and other memory controllers and
storage processors using ring interface (bandwidth 4 GB/s).

The SP consists of control processor, request manager,
DMA engine, data scheduler, compute scheduler, and com-
pute kernel. Each host process that wants to issue computa-
tion requests in the storage processor is given a command
and status area in the control processor’s local memory
which is setup, managed and released by the driver.

The host dispatches computations by writing in the
command area associated with that process. The host can
continue executing asynchronously or can wait for the com-
pletion of command processing by polling for status. When
instructions exist in command area, the control processor
fetches and executes instructions from the command buffer.

The control processor is an in-order RISC processor
which issues DMA requests to load or store file data from
or to memory controllers and dispatches application-specific
computations to compute kernels via the request manager.
The control processor also performs scalar operations on
behalf of the application.

The request manager receives DMA or computational
requests from the control processor, breaks large requests
to multiple small requests and places them into a queue of
the data scheduler or compute scheduler respectively. The
DMA engine efficiently loads data from the memory con-
troller to local memory based on the request from the data
scheduler and vice-versa. The data scheduler issues multiple
DMA requests, maintains a scoreboard and sends back
acknowledgment to the request manger on completion. The
compute kernel has application specific code for hardware
acceleration and operates on data in local memory based
on computational requests from the compute scheduler.
The compute scheduler triggers application-specific kernels,
checks status and returns result to the request manager on
completion.

The compute kernel is an application-specific hardware
module that receives commands from the compute scheduler.
Each kernel processes data in local on-chip RAM. We have
developed several custom kernels manually in Verilog for
evaluation (see Section IV). Custom kernels offer the highest
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Fig. 4. The fgrep-8 kernel receives compute requests, finds
matching strings, updates the word match counter, and sends a
response to the compute scheduler.
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Fig. 5. The execution flow on Minerva based system is initiated
by the host, runs asynchronously on the storage processor, and is
terminated by the host.

performance at the corresponding cost of hardware design
expertise and the requirement to interface to the compute
scheduler.

As an example, Figure 4 shows a simple streaming kernel,
fgrep-8, which receives compute requests from the compute
scheduler. The request extractor extracts the reference string
and data location information. The data may reside in a local
memory, in which case it is loaded by the local controller,
or may reside in a remote memory. In the latter case, the
data must be read by the remote memory controller and
transferred via the ring network to a memory block local
to the requesting processor. The fgrep-8 FSM compares the
reference pattern with the data in the local memory block.
On matches, the kernel increments the match word counter
and when all the requested data has been searched, it sends
back the results to the compute scheduler via the response
generator. The control processor updates the status block
based on the response of command processing and generates
an interrupt for completion notification. It also generates an
interrupt in case of failure or situations that require host
intervention to resolve. For example, the storage processor
does not initiate I/O operations for safety and simplicity.
The host issues I/O operations upon request from the storage
processor.

int64_t GrepPthread(int fd, int64_t offset,
size_t size, int64_t key)

{
// Allocate local buffer
buf = (int64_t*) malloc(buf_size);
// Read file with given offset
pread (fd, buf, buf_size, offset);
// Search for key and increment
for(i = 0, i < buf_size, i++){
if(buf[i] == key)match_count += 1;
}
return match_count;

}

Fig. 6. The conventional fgrep-8 code snippet

B. Minerva Programming Model
We propose a generic command/status mechanism to

dispatch computations which allows applications to be ex-
ecuted efficiently and safely. The command/status API is
managed by a software driver, which is responsible for setup,
management, monitoring and release of the SP on behalf of
a given application process.

The application uses the command data structure to of-
fload application-specific processing to the storage processor
and uses status data structure to read the response from the
SP. The command structure contains command sequence
number, PID, application’s kernel name and associated
parameters such as data and file extents. The command
sequence number is incremented once for each request and
provides a unique command identifier. The storage processor
processes user commands and updates the status structure.
The status structure comprises of a unique command se-
quence number, command status and results. The command
status field indicates the completion of a given command.

We provide the write function sppwrite to send com-
mands to the storage processor from the host. This is
analogous to existing file write function pwrite but takes
the storage processor’s ID and command location instead of
file descriptor and file offset as input arguments. Similarly,
we read status from the storage processor using sppread.

Figure 5 shows the execution flow of an application using
the Minerva architecture. If needed, the host processor loads
file data onto the SSD. Files are striped across multiple
memory controllers for parallelism. Next, the host processor
allocates a particular command and status structure for
that application and then the host distributes computations
across multiple storage processors through the command
data structure. The storage processors process application-
specific code and update their status data structures. During
computation, if a storage processor is asked to access
data outside its local stripe(s), it fetches that data from
remote memory controllers. When the command has been
completed, the host merges results from different storage
processors and produces the output. Finally, the host proces-
sor deallocates the command and status structures associated
with that application.

As an example, the fgrep-8 benchmark scans through a
data file, searches for a specified 8-byte character pattern
and counts the number of occurrences. Figure 6 presents
a code snippet illustrating a parallel fgrep-8 function using



int64_t GrepMinervaHost(int fd, int64_t offset,
size_t size, int64_t key)

{
int64_t match_count = 0;
// Create command: which consists
//kernel name, extents and key
cmd_buf = CreateCmd("fgrep",

fd, offset, size, key);
// Write the command
sppwrite (sp_id, cmd_buf, buf_size, cmd_offset);
// Check for completion notification
// and then read status
while(!complete);
spppread (sp_id, status_buf, buf_size,

status_offset);
// Read match count from status buffer
match_count = get_match_count(status_buf);
return match_count;

}

Fig. 7. Minerva’s fgrep-8 host code snippet

void GrepMinervaSP(char* command, char* status)
{
int64_t local_match_count = 0;
// Retrieves kernel name,
// extents and key from the command
kernel = GetKernelName(command);
extents = GetExtents(command);
key = GetKey(command);
// Read data from local memory
// controller and checks key
for(i = 0;i < extents_count;i++){

DmaData(extents, buf);
match_count +=
RunKernel(kernel, buf, key);

}
// Update status and send
// completion notification
UpdateStatus(status, match_count);

}

Fig. 8. Minerva’s fgrep-8 storage processor kernel snippet

pthreads. The data file is split across multiple threads and
each thread reads the file at its assigned offset. The thread
reads “size” bytes of data from the storage array into a local
buffer. Then it searches for a specified character pattern and
increments match count when a match found. Finally, the
main program combines all the match counts to get the total
number of matches.

The Minerva version has two parts: the host application
code and the fgrep-8 kernel code on the storage processor.
The host application initiates computation using a compu-
tational write command. The command comprises of the
kernel name and input arguments such as file extents and
key along with other control information. Our run-time
library function extracts information on the data file extents
from file system. The host application sends the command
using sppwrite and waits for the storage processor’s
notification on completion. The storage processor retrieves
the kernel name, file extents and key from the command.
Then it reads file data based on the extents information using
DMA, and counts the number of matches using the fgrep-8
kernel (Figure 4). Finally, it updates status field with the
match count and issues completion notification. When host
receives completion notification it reads status and gets the
match count. Figure 7 and Figure 8 present the Minerva’s

TABLE II
RESOURCE USAGE ON VIRTEX-5 LX155T

Component Slice Regs LUTs BRAMs
% % %

Request Scheduler 10536 10.8 11509 11.8 60 28.3
Storage Processor 18359 18.8 14408 14.8 24 11.3

Memory Controller 6779 6.9 5405 5.5 18 8.4
PCIe-1.1 x8 3882 3.9 3008 3.0 11 5.1

Ring Network 984 1.0 856 0.8

fgrep-8 code snippet of the host and storage processor
respectively. As an optimization, we also implement double
buffering to simultaneously load data from the memory
controller to one local buffer and execute the application-
specific kernel on another buffer.

C. Minerva prototype
We implemented Minerva on the BEE3 FPGA prototyp-

ing system jointly developed by Microsoft Research, UC
Berkeley, and BEEcube Inc.. The BEE3 system holds 64
GB of 667 MHz DDR2 DRAM under the control of four
Xilinx Virtex-5 LX155T FPGAs, and it provides a PCIe-
1.1 x8 (2 GB/s full duplex) link to the host system. We
used the high speed DDR2 ring network to connect multiple
FPGAs with roundtrip latency of 88 ns and bandwidth of 4
GB/s. The system clock runs at 250 MHz. We implemented
the hardware components such as request scheduler, storage
processors and memory controllers on the FPGAs. Table II
presents the FPGA resource usage of different components.

Since PCM is the most promising among different NVM
technologies and receives great attention in research commu-
nity as a viable future replacement of existing charge based
memory technologies, we use PCM for our evaluation. We
emulate PCM using the DRAM of the BEE3 system with
access latency as described in [19]. We modify the memory
controller to add latency between the read address strobe and
column address strobe commands during reads and extend
the pre-charge latency after a write by inserting delay. We
cannot stop DRAM refresh to preserve data which is not
required for these NVM technologies.

D. Minerva Latency and Bandwidth Characteristics
We measure the latency of 4 KB page accesses for a

storage processor on Minerva and the host using a conven-
tional I/O request to Moneta-D [7]. The storage processor’s
access time is significantly less than the host’s as the request
and data don’t travel over the PCIe bus and don’t incur
software driver overhead. The Minerva storage processor
sees a latency of 1.5 µs for local 4 KB page access which is
almost 82% reduction as compared to Moneta-D. The stor-
age processor bandwidth varies with the degree of locality.
When a data set is not fully local, the storage processor
must read/write data from/to other memory controllers over
the 4 GB/s ring network. We introduce a new term called
remote access rate which is the ratio of number of remote
memory controller accesses to total number of accesses.
Figure 9 shows the bandwidth as a function of the remote
access rate for Minerva and Moneta-D. The remote access
rate 0.0 is the best case when a dataset is fully local
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TABLE III
MICROBENCHMARKS

Name Data Sets Description
Fgrep-8 32 GB Scans a file for a given 8-byte

pattern matching.
RMW 32 GB Read-modify-write random file lo-

cations.

to the storage processor and Minerva achieves aggregate
bandwidth of 23.8 GB/s. Then we increase remote access
rate by increasing number of accesses on remote memory
controllers. We observe a linear drop in aggregate bandwidth
as we increase the remote access rate. In worst case, when all
accesses from the remote memory controller we achieve an
aggregate bandwidth of 3.6 GB/s. The application developer
can optimize performance by partitioning the data set and
computation to reduce the number of remote accesses.
With conventional host-based I/O using Moneta-D, the PCIe
interface limits the overall bandwidth of Moneta-D and thus
the abundant PCM bandwidth inside SSD remains untapped.
Moneta-D achieves aggregate bandwidth of 2.9 GB/s.

IV. EVALUATION

We begin our evaluation by focusing on I/O and data
intensive microbenchmarks and the impact of Minerva on
overall execution time. The host machine is two-socket,
Core i7 Quad machine running at 2.26 GHz with 16 GB of
physical DRAM and two 8 MB L2 caches (one per socket).
We compare Minerva’s performance with Moneta-D [7] to
demonstrate that the performance gain of Minerva is not
only from using PCM but also its hardware and software
enhancements. We also present sensitivity analysis results
including the impact of number of memory controllers and
the data size on overall performance. Then we study the
impact on a key/value data store.

A. Microbenchmarks
Table III shows benchmarks for evaluation. They rep-

resent two different types of applications. Fgrep-8 has

Time (s)
0 4 8 12 16 20

Moneta−D

Minerva(Base)

Minerva(Opt)

SW_App

SW_Driver

PCIe

SP

PCM

Fig. 10. The execution time breakdown for the grep on Minerva and
Moneta-D.

A. Moneta-D
Single RMW

B. Minerva 
Single RMW

Latency (µs)

Moneta-D
Host

Minerva
Host

2 4 6 8 10 12 14

SP

Software

PCIe Transfer

PCM

Read (5.6 µs) Modify & Write Back (5.6 µs)

CmdWrite (5.7 µs)

C. Minerva 
32 RMW Minerva

Host

CmdWrite (9.8 µs)

Fig. 11. The latency comparison for RMW on Minerva and Moneta-D
(Read/Write 512 B).

sequential accesses and the I/O interface bandwidth lim-
its the performance of Fgrep-8. Minerva exploits massive
bandwidth and parallelism of multiple memory controllers to
significantly improve performance. RMW has small random
accesses on different file locations. It performs poorly on
the conventional architecture because of high I/O overhead.
Minerva accelerates the performance by eliminating I/O
and performing efficient FPGA-based data processing in
the SSD. We developed a conventional parallel version
of those benchmarks using pthreads for Moneta-D and
then developed a Minerva version. We briefly describe the
conventional and the Minerva version of each benchmark.

Fgrep-8 Fgrep-8 scans through the data file, searches for
a specified 8 byte character pattern and counts the number
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of occurrences. We discussed its implementation detail in
Subsection III-B.

RMW RMW measures read-modify-writes-per-second. It
randomly reads and updates different locations of a file. In
the conventional version, each update needs to read existing
value from the file (read I/O), update it (increment by 1) and
finally write back updated value to the file (write I/O). In
Minerva version, the host sends a computational command
to the storage processor with a given file location. The
storage processor reads the data, modifies it and writes it
back to the file, and finally sends notification to the host on
completion. We further optimize it by agglomerating multi-
ple such operations in a single computational command. We
implemented this feature in our user-space library.

B. Microbenchmarks Performance Analysis
Fgrep-8 has sequential accesses and is mainly I/O band-

width limited which indicates a large scope of improvement
with Minerva. Figure 10 shows the execution time break-
down of Moneta-D and Minerva for the fgrep-8 bench-
mark with file size 32 GB. Moneta-D achieves maximum
performance with 16 threads configuration and the total
execution time is 19.65 sec. This is almost 4⇥ speedup over
single-threaded performance due to better utilization of the
I/O stack and multi-core system. However, the performance
of Moneta-D is mainly limited by the PCIe interface and
the software driver overhead. Moneta-D achieves read I/O
bandwidth of 1.6 GB/s which is 6.7% of SSD’s internal
bandwidth. Minerva exposes high internal bandwidth of the
SSD and eliminates storage I/O overhead by offloading
computations to the SSD. Fgrep-8 exploits the internal
bandwidth across multiple controllers by running parallel
stream kernels in each memory controller and keeping data
movement local to each controller. It also uses double buffer-
ing to effectively utilize computational resources. Minerva
achieves aggregate read bandwidth of 23.6 GB/s and takes
total execution time 1.25 sec. It outperforms Moneta-D by
15.7⇥.

RMW has random accesses and mainly depends on I/O
latency. Figure 11 shows the latency of Moneta-D and
Minerva for RMW benchmark. For single RMW, Minerva
reduces the total latency by half using one computational
request. For multiple RMW, Minerva agglomerates multiple
requests to one computational requests and significantly re-
duces the overall execution time. Minerva achieves through-
put of 1.1 million ops/s which is 24⇥ faster than Moneta-D.

Figure 12 (left) shows the speedup of Minerva with
different number of memory controllers for Fgrep-8. The
input data file size is fixed at 32 GB. In Moneta-D, we
observe a little performance improvement when the number
of memory controller(s) increases from one to two because
of data striping across multiple controllers but saturate after
that due to PCIe bandwidth limitations. Minerva achieves
significant performance improvement and is scalable with
increasing number of memory controllers. In addition, we
experiment with different sizes of dataset. Figure 12 (right)
shows the performance of the Fgrep-8 where we vary the
data set size from 1 GB to 32 GB with fixed number of

TABLE IV
MEMCACHEDB PERFORMANCE COMPARISON

Operation Moneta-D(ops/s) Minerva (ops/s) Speedup
Get 709634 5290015 7.45
Put 415110 4087889 9.85

Workload-A 524842 4686839 8.93
Workload-B 684888 5232544 7.64

memory controllers (4) for Moneta-D and Minerva. Min-
erva’s speedup ranges from 15.7⇥ to 21.25⇥. It achieves
maximum speedup for 1 GB data since Moneta-D can not
exploit the full PCIe bandwidth for small datasets whereas
Minerva exploits the full internal bandwidth of SSD. Even-
tually, we achieve sustainable speedup of 15.7⇥ for larger
datasets.

C. Minerva based MemcacheDB
To understand the impact on large scale enterprise ap-

plications (e.g., Amazon [11], LinkedIn [1] and Face-
book [20]) we integrated a Minerva based hash table into
MemcacheDB [8], a persistent version of memcached [20],
the popular distributed key-value store. By default, Mem-
cacheDB uses BerkeleyDB [21] for reliable persistent stor-
age. MemcacheDB uses a client-server architecture, and, for
this experiment, we run it on a single computer acting as
both clients (using 16 threads configuration) and server. The
key-value data is stored into the SSD. The host sends get
and put requests to the storage processor using commands,
and the storage processor performs those operations inside
SSD and returns result of execution. We implement get and
put operations in the storage processor and resolve collision
using chaining. During get, the storage processor applies
a hash function on key to get the bucket index. Then it
traverses the chain of that bucket in the storage. If the key
matches, it returns the corresponding KV data otherwise
returns NULL. During a put, it applies the hash function
to get the bucket index and then inserts the KV pair to the
corresponding bucket in the storage. They are implemented
as a custom kernel similar to microbenchmarks.

We use YCSB [10] to generate two types of key-value
workloads with default configurations of 20-byte keys and
1000-byte values: A) update heavy (50% put / 50% get)
and B) read heavy (5% put / 95% get). Table IV shows
the throughput of individual operations and workloads per-
formance of Minerva and Moneta-D. Minerva achieves
more than 5 M get ops/sec and 4 M set ops/sec which
is 7.45⇥ and 9.85⇥ more than Moneta-D. Minerva also
outperforms Moneta-D by 8.93⇥ and 7.64⇥ for Workload-
A and Workload-B respectively. We improved performance
by batching multiple get/set requests in one computation
request and performing processing in the storage.

V. RELATED WORK

Intelligent storage Application-level processing on stor-
age originates from research in database machines in the
80’s [12]. Those machines did not exist due to the limited
disk bandwidth and the complexity of programming special-
purpose hardware at that time. With increasing performance



of processors and memory in late 90’s, the Active Disk [2],
[25] project again takes advantage of the processing power
on hard disk drives to run application to reduce data traffic
between the storage and the host. They proposed a stream-
based programming model that allows application code to
execute on the disk and identified a set of applications
that may benefit from the Active Disk. Intelligent Disk
(IDISK) [17] built for decision support database servers
was based on similar ideas and provided high-speed serial
communication links for communication between IDISKs.
However, applications executed on the Active Disk remained
I/O-bound due to the disk’s poor performance as compared
to the DRAM-based main memory. Thus storage vendors
have not offered the required software support and interfaces
to make the Active Disk practical and widely used.

FPGA-based acceleration Presently, FPGAs have been
widely used for various application-specific hardware accel-
eration. Convey [9] integrates FPGAs along with the general
purpose processor which shares the same virtual address
space. The IBM Netezza data warehouse appliance [15]
uses an FPGA close to the hard drive to reduce data traffic
over the network. The emergence of NVMs presents a great
opportunity to remove the data access bottleneck in hard
drives and match the data processing.

Minerva is based on emerging fast NVM technologies.
They are fundamentally different than mechanical disk
and flash. The disk technology continues to lag behind
the main memory whereas NVMs are narrowing down
the performance gap between the storage and the main
memory, challenging SSD architecture and I/O interfaces
(PCIe, SATA etc.). The previous works on intelligent storage
mainly focuses on streaming application to exploit the
disk characteristics such as fast sequential access whereas
Minerva is not limited to streaming applications only, and
supports wide range of I/O and data intensive applications.

VI. CONCLUSION

We have presented Minerva, a compute capable SSD
architecture that provides adequate hardware and software
support to efficiently offload application code to the storage
array to get advantage of low latency and high bandwidth
NVMs and FPGA-based hardware acceleration. Minerva is
very suitable for big data applications often exhibit poor
temporal and/or spatial locality and perform poorly on
the conventional system due to large I/O overhead. We
have developed a complete hardware infrastructure that
incorporates a storage processor into the storage controller.
The storage processor executes application-specific compute
kernels, yet co-exists with conventional I/O requests to
the storage controller. We have built a high level API
for communication between software applications and the
compute kernels that abstracts away many details of commu-
nication and synchronization. We demonstrate how to map
applications to Minerva and evaluate the performance gain.
Minerva consistently outperforms the PCM-based SSD that
uses the conventional I/O architecture, and achieves speedup
of 7.64⇥ to 8.93⇥ on an enterprise workload benchmark.
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