
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

INV ITED
P A P E R

Variability Mitigation in
Nanometer CMOS Integrated
Systems: A Survey of
Techniques From Circuits
to Software

By Abbas Rahimi, Student Member IEEE, Luca Benini, Fellow IEEE, and

Rajesh K. Gupta, Fellow IEEE

ABSTRACT | Variation in performance and power across

manufactured parts and their operating conditions is an ac-

cepted reality in modern microelectronic manufacturing pro-

cesses with geometries in nanometer scales. This article

surveys challenges and opportunities in identifying variations,

their effects and methods to combat these variations for im-

proved microelectronic devices. We focus on computing de-

vices and their design at various levels to combat variability.

First, we provide a review of key concepts with particular em-

phasis on timing errors caused by various variability sources.

We consider methods to predict and prevent, detect and cor-

rect, and finally conditions under which such errors can be

accepted; we also consider their implications on cost, perfor-

mance and quality. We provide a comparative evaluation of

methods for deployment across various layers of the system

from circuits, architecture, to application software. These can

be combined in various ways to achieve specific goals related

to observability and controllability of the variability effects,

providing means to achieve cross-layer or hybrid resilience.

We then provide examples of real world resilient single-core

and parallel architectures. We find that parallel architectures

and parallelism in general provide the best means to com-

bat and exploit variability to design resilient and efficient sys-

tems. Using programmable accelerator architectures such as

clustered processing elements and GP-GPUs, we show how

system designers can coordinate propagation of timing error

information and its effects along with new techniques for

memoization (i.e., spatial or temporal reuse of computation).

This discussion naturally leads to use of these techniques into

emerging area of “approximate computing,” and how these

can be used in building resilient and efficient computing sys-

tems. We conclude with an outlook for the emerging field.

KEYWORDS | Approximate computing; resilient systems; tim-

ing errors; variability

I . SOURCES OF VARIABILITY

Variation in performance and power consumption is a

common phenomenon in semiconductor manufacturing.

What makes it particularly challenging, however, is its

effect on manufacturing of devices as these scale down

Manuscript received February 9, 2015; revised July 10, 2015 and December 14, 2015;
accepted January 4, 2016. This work was supported by NSF Variability Expeditions
(1029783), ERC-AdG MultiTherman (291125), and FP7 Virtical (288574).
A. Rahimi and R. K. Gupta are with the Department of Computer Science and
Engineering, University of California, San Diego, La Jolla, CA 92093 USA
(e-mail: abbas@cs.ucsd.edu; gupta@cs.ucsd.edu).
L. Benini is with the Department of Information Technology and Electrical
Engineering, Swiss Federal Institute of Technology in Zurich, 8092 Zurich
Switzerland, and also with the Department of Electrical, Electronic and
Information Engineering, University of Bologna, 40136 Bologna, Italy
(e-mail: lbenini@iss.ee.ethz.ch).

Digital Object Identifier: 10.1109/JPROC.2016.2518864

0018-9219 Ó 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

| Proceedings of the IEEE 1

mailto:abbas@cs.ucsd.edu
mailto:gupta@cs.ucsd.edu
mailto:lbenini@iss.ee.ethz.ch

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

to near atomic scale feature dimensions. Any variation in

dimensions, doping, etc. has a large effect on the result-
ing device and circuit behavior [1], [2]. To address this

variation, designers resort to design guardbands. There is

evidence that these guardbands are increasing rapidly,

accounting for nearly 40% of the target performance,

e.g., and eventually obliterating any gains due to device

scaling [3]. As a consequence, reduction of design guard-

bands in design has become an important research chal-

lenge with recent results that seek to recover these
guardbands through circuit-level changes [4].

Broadly speaking, there are three physical sources of

variations: 1) Spatial variability: Process variations

cause static variations in channel length (L) and thresh-

old voltage ðVthÞ of devices due to random dopant fluctu-

ations and subwavelength lithography. Static process

variations manifest themselves as die-to-die (D2D) and

within-die (WID) variations [1]. This includes systematic
process and apparatus induced variations as well as ran-

dom variations. D2D variations affect all devices on a die

equally, whereas WID variations induce different charac-

teristics for each device. 2) Temporal variability: Aging

and wearout mechanisms that cause slow temporal deg-

radation in devices reliability. Device aging mechanisms

are induced by negative bias temperature instability

(NBTI), positive bias temperature instability, electromi-
gration, time dependent dielectric breakdown, gate oxide

integrity, thermal cycling, and hot carrier injection [5].

3) Dynamic variability: Environmental variations in am-

bient condition are caused by temperature fluctuations

and supply voltage droops. Voltage droops result from

abrupt changes in the switching activity, inducing large

current transients in the power delivery system (dI/dt

voltage drops), and contain high-frequency and low-
frequency components which occur locally as well as

globally across the die [6]. On the other hand, tempera-

ture variations occur at a relatively slow time scale with

local hot spots on the die, depending on environmental,

and workload conditions [7]. The origins of variability in-

clude time-independent DC component (process varia-

tions), slow-varying low-frequency components (aging

and temperature), and fast-changing high-frequency com-
ponents (voltage droops). The variations are expected to

be worse with technology scaling [3].

Spatial parameter variations in the device geometries

in conjunction with temporal degradation and undesir-

able fluctuations in the operating condition may prevent

circuit from meeting the performance and power con-

straints. Table 1 illustrates design impact of performance

and power in the presence of such variations [3]. The

most immediate manifestations of variability are in path
delay (therefore, performance) and power variations. Se-

quential elements are connected at the end of the paths

to hold the circuit state. Path delay variations cause vio-

lation of timing specification resulting in circuit-level

timing errors that could lead to an invalid state being

stored in the sequential element. This could result in a

malfunction of the digital system. Synchronous circuit

designers commonly handle the timing errors by adding
safety timing margins to the voltage and/or the clock fre-

quency as guardband. This practice leads to overly con-

servative designs. Currently, the guardbands tend to

accumulate as design closure is performed using a multi-

corner analysis, with an increasing number of corners

[9]. As a result, the impact of guardbanding on the key

design metrics (power, performance, and area) has been

steadily increasing with technology scaling [3], leading to
loss of operational efficiency and increased costs due to

overdesign. Power variability is also challenging, for in-

stance 13� variation in the sleep power across ten in-

stances of ARM Cortex M3 core has been observed over

a temperature range of 22–60 �C [10]. However, we nar-

row the scope of this paper to the path delay variation

and its manifestation as timing errors. We identify the

timing errors as the most threatening manifestation of
variability and investigate various means to address it

throughout this paper. We begin with a quantitative feel

of the extent of variation currently seen in manufactured

devices. Section II covers the delay variation in details.

Earlier variability-centric surveys [11], [12] have fo-

cused on the circuit and architecture levels, by contrast

we focus on software, application and algorithmic

methods. Further, we provide a holistic remedy for both
data-level and task-level parallel architectures.

II . DELAY VARIATION

Authors in [4] quantify the impact of individual process,

voltage and temperature (PVT) variations on a standard

cell inverter delay through SPICE simulations. Table 2

shows eight possible combinations of PVT corners in
65 nm technology. Between the worst-case and the

best-case PVT corners, 1.8� delay variation has been

observed; 1.46� comes from the process, 1.25� comes

from the voltage, and 0.97� comes from the tempera-

ture due to temperature inversion effect [4].

For an Intel 80-core processor in 65 nm, Fig. 1 shows

the WID core-to-core maximum frequency (Fmax)

Table 1 Design Impact of Performance and Power in the Presence of Variability Extracted From [3]

2 Proceedings of the IEEE |

Rahimi et al.: Variability Mitigation in Nanometer CMOS Integrated Systems

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

variations for each of the 80 cores. The measurements

have been done at a fixed operating temperature of 50 �C
with three operating voltages: 1.2, 0.9, and 0.8 V. At the

nominal voltage of 1.2 V, the fastest core displays the

Fmax of 7.3 GHz while in the same die the slowest core

can work with the Fmax of 5.7 GHz resulting in 28%
WID clock frequency variation. Fig. 2 illustrates the delay

distribution of the 80 cores for the same operating condi-

tions [13]. The single die with 80 cores exhibits an in-

creasing value of �=� for lower voltages: 5.93%,
6.37%, and 8.64% for 1.2, 0.9, and 0.8 V, respectively.

Lowering the voltage from the nominal 1.2 V to 0.8 V,

increases the critical paths variability ð�=�Þ by 45% [13].

Voltage overscaling (VOS) [14] and working at near-

threshold (NT) voltage [15] have become popular ap-

proaches for building energy-efficient digital circuits.

Operating at low voltages ðVDD � 0:5 VÞ unfortunately

exacerbates the effects of delay variations [14], [16]–[19].
This indicates the importance of variability awareness at

lower operating voltages where the delay uncertainty is

further increased. The WID delay measurement for a

45 nm SIMD processor shows that reducing VDD from

1.0 to 0.53 V increases the delay variation by 6� [19].

Fig. 3 shows the normalized gate delay variation due to

process variations as a function of VDD [16]. Working at

near threshold voltage of 400 mV increases the perfor-
mance variability by 5� compared to 1.3� at the nominal

operating voltage. It is then clear that for logic working at

NT voltages, the statistical WID variation in the voltage

threshold ðVthÞ plays an important role in determining

the path delay. Vth variations result mainly from random

fluctuations in the number of dopant atoms in the tran-

sistor channels [17]. Considering dynamic sources of

variations, including temperature fluctuations, and volt-

age droops results in a total performance variability of

20� [16].

Given such a growing increase in performance vari-
ability, design methods are needed to make a design re-

silient to the timing errors especially so for circuits

operating at low voltages where the effect of delay uncer-

tainty is pronounced. The effects of the static process

variations can sometimes be mitigated through binning

or by postsilicon tuning during test time, while the dy-

namic variations manifest themselves on the field as a

function of time and environment, and therefore cannot
be compensated by one-time presilicon and postsilicon

tuning techniques. Consequently, accurate design time

Fig. 1.WID core-to-core maximum clock frequency variation for

80 cores on a single chip [13].

Fig. 2. Critical path delay distribution and its coefficient of

variation ð�=�Þ for 80 cores on a single chip [13].

Fig. 3. Impact of voltage scaling on gate delay variation due to

process variation [16].

Table 2 Inverter Delay for Different 65 nm PVT Corners [4]

| Proceedings of the IEEE 3

Rahimi et al.: Variability Mitigation in Nanometer CMOS Integrated Systems

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

analysis coupled with efficient runtime techniques are

required to overcome the variability challenges.

The rest of the survey paper is organized as follows. In

the next three sections, we provide a taxonomy to classify

various variability-tolerance approaches. Section III de-
scribes three classes of methods to handle timing errors at

different abstraction levels. Section IV covers enhanced

methods through combined approaches of error handling

as well as cross-layer error information exchange. Granu-

larity of observing and controlling timing errors is dis-

cussed in Section V. In Section VI, we illustrate single-core

and parallel architectures where the approaches presented

in the previous sections are integrated to enhance their re-
siliency. In focus of data-level and task-level parallel archi-

tectures in Section VII, we further describe how combined

approaches can be applied in such architectures. In

Section VIII, we conclude with an outlook for the emerg-

ing field of resilient and approximate computing.

III . A TAXONOMY FOR TIMING
ERROR TOLERANCE

This section classifies approaches to timing error han-

dling into a conceptual Y-chart shown in Fig. 4. The

Y-chart groups techniques to address variability into three

classes based on when and how the timing errors should

be manipulated. These three classes of the Y-chart are on

radial axes. The first axis describes design time approaches
to predict and avoid the timing errors. The second axis fo-

cuses on runtime approaches to detect and correct the

timing errors, while the third axis neglects the timing er-

rors if possible. Each class is divided into levels of ab-
straction, using concentric rings. Every abstraction level

determines at which level of the computing stack the ap-

proaches can be applied: circuit, architecture, software, ap-
plication and algorithm. At the top level outer ring, we

consider approaches applicable to algorithm or applica-

tion level; at the lower levels inner rings, we refine ap-

proaches into finer software, architecture, and circuit

implementations. These three axes are covered in
Section III-A–C.

A. Predicting and Preventing Timing Errors
In this section, we describe a class of approaches

that aim at reducing the excessive guardband or gener-

ally enabling better than worst-case design while avoid-

ing the timing errors. This class typically relies upon
modeling that derives rules for simultaneous guardband

reduction and error prevention. Table 3 lists how these

approaches are implemented at different design abstrac-

tion levels. Our description in Section III-A accordingly

moves form circuit level in Section III-A1, to architec-

ture level in Section III-A2, and finally to software level

in Section III-A3.

Fig. 4. Taxonomy for timing error tolerance: Abstractions versus approaches.

4 Proceedings of the IEEE |

Rahimi et al.: Variability Mitigation in Nanometer CMOS Integrated Systems

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

1) Circuit: The prediction and prevention approaches

at the circuit-level are threefold. Some of these ap-

proaches tune available CMOS knobs of the circuit.

Other approaches either change the topology of the

clocked circuits, or switch to clockless (self-timed) cir-

cuits to enhance immunity from the timing errors.

Tuning CMOS Knobs: These approaches tune electri-
cal characteristics (e.g., power and delay) of a circuit

block by leveraging CMOS knobs including, body bias,

supply voltage, and clock frequency. These approaches

are dynamic in nature, therefore enable adaptive circuit

design that can be tuned after fabrication. Adaptive body

biasing is one such runtime technique which carefully se-

lects an appropriate body bias as an available parameter

to tune the electrical circuit characteristics [37], [38].
Forward body bias reduces the voltage threshold ðVthÞ,
while reverse body bias increases the Vth. Increasing the

Vth improves performance (lower delay) at the expense

of additional leakage power, while decreasing the Vth re-

duces both performance and leakage power. Therefore, a

slow circuit block can be forward biased, whereas a leaky

circuit block can be reverse biased. Similarly, voltage

and/or clock frequency can be tuned to compensate the
variations [13], [39]–[44]. Table 3 lists various imple-

mentations of adaptive voltage/frequency scaling.

Circuit Topology Optimizations: These methods uti-

lize the design time CAD optimizations to change the to-

pology of a circuit for enhancing its resiliency against

timing error. For a given circuit, there will be “a wall” of

equally critical paths that are highly susceptible to timing

errors especially so in voltage overscaling (VOS) regime
[53]. To alleviate the effect of cluster of critical paths,

some of the approaches focus on uncertainty-aware [45]

circuit optimizations such as upsizing and downsizing

gates (W/L ratio), use of multiple Vth cells, and restruc-

turing to reshape the path delay distribution. These

methods strive to shift the timing slack of frequently-

exercised and near-critical paths in a power/area-efficient

manner [46]. Other approach clusters timing critical

cells, and inserts sleep transistors in a row-based layout

for power-gating those cells [48]. In [4], the authors de-

scribe a model of guardband reduction through standard

cell synthesis, place and route optimization flow to quan-

tify the impact on quality of results.

Self-Timed Circuits: In self-timed circuit, or asynchro-
nous circuit, there is no need for a clock signal to deter-

mine a starting time for a computation. Delay insensitive

circuit is among robust asynchronous circuits because it

makes no assumptions on the delay of wires or gates.

Quasi delay insensitive circuit is a subclass of the delay in-

sensitive asynchronous circuit which makes minimal de-

lay assumptions only on isochronic forks. Therefore, the

quasi delay insensitive circuit blocks independently oper-
ate at their maximum speed for a given amount of vari-

ability. Authors in [49] design two versions of 8051

microcontroller: a synchronous logic (S8051) and a quasi

delay insensitive asynchronous logic (A8051). Both cores

are fabricated on the same die at 130 nm technology for

performance measurements from nominal voltage to deep

subthreshold. A8051 has �2� larger area than the S8051,

while both cores feature comparable energy and speed at
nominal conditions. However, when PVT and workload

are varied the S8051 requires �4�, �1:5�, and �2�
delay margins for process ð�Vth ¼ �3�Þ, voltage

ð�V ¼ �10%Þ, and temperature ð�T ¼ 70 �CÞ varia-

tions, whereas the A8051 operates at actual speed [49].

Nevertheless, a delay insensitive circuit may spend

energy to ensure its functional integrity that could be

used instead on computation. To address this, a new
methodology is proposed to compose several flavor of

asynchronous circuit implementations (with different

power/timing modes, possibly synchronous one) into a

single adaptive parameterized circuit where the adapt-

ability of such runtime reconfigurable solution out-

weighes the overheads [50]. To combat the variations,

an out-of-order processor partitions its components to

Table 3 Predicting and Preventing Timing Errors: Abstractions Versus Approaches

| Proceedings of the IEEE 5

Rahimi et al.: Variability Mitigation in Nanometer CMOS Integrated Systems

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

different clock domains using a globally asynchronous, lo-
cally synchronous (GALS) paradigm [51]. GALS is also

used as a variation-tolerant communication network across

multiple processers [39], and processor clusters [52].

2) Architecture: To avoid the timing errors, some ar-

chitectural approaches utilize various indicators such as

program counter (PC), cache misses, etc. to predict the

timing errors and avoid them in advance. Alternatively,
other approaches select appropriate parametersVamong

all available choicesVfor different architectural compo-

nents that enable them to prevent the timing errors.

Early Prediction Using Micro Indicators: Some ap-

proaches leverage existing embedded indicators to tie an

architectural event to a possible timing error. For in-

stance, the PC is used as a predictor of an incoming tim-

ing error by monitoring an errant instruction [28]. This
PC-based approach can pinpoint to a highly probable er-

rant instruction and therefore trigger a preventive mecha-

nism to avoid the timing error. For example, the

instruction scheduling in an out-of-order processor can be

enhanced for this purpose [29]. Other approaches extract

signatures to link microarchitectural indicators to fast dy-

namic variations such as impending voltage droops [30].

To construct such a signature for the voltage droops, a
voltage emergency predictor observes the pipeline flush

and the cache miss [30]. Such a signature can accurately

notice the likelihood of a voltage droop few cycles ahead

of occurrence to avoid recurrence of the corresponding

voltage droop.

Parameters Selection: Other architectural approaches
try to select an appropriate value for a given microarchi-

tectural parameter during the design time to enhance the
resiliency. For instance, Liang and Brooks propose a joint

architectural and statistical timing analysis method of se-

lecting pipeline depth and size to mitigate the impact of

clock frequency variations [31]. Similar techniques focus

on multivariable latency blocks. A variable-latency tech-

nique alleviates the impact of the process variations on

the register file and the execution units in a microproces-

sor [32]. Critical path isolation for timing adaptiveness
(CRISTA) [33] isolates the long critical paths of the de-

sign and provides an extra clock cycle for those paths;

therefore, CRISTA avoids possible delay failures in the

critical paths by dynamically switching to two-cycle oper-

ation when they are activated. CRISTA assumes all stan-

dard operations are single cycle. Trifecta [34], a variable

latency processor based on CRISTA, completes instruc-

tions that activate those long critical paths in two cycles.
Data-dependent operation speedup is another architec-

tural technique that dynamically allows more cycles de-

pending on where the data are inside a combinatorial

stage [35]. Another parameter selection method dynami-

cally adapts the clock frequency, per-subsystem voltages,

the issue queue size, and the functional unit structure for

a processor [36]. Moving to an 80 cores chip, the voltage/

frequency for every core is tuned to avoid the timing

errors [13].

3) Software: Software approaches presented in this

section follow the architectural prediction approaches to

extract a warning signature from the low-level program

execution, rather than the architectural indicators. This

signature increases capability of software to avoid the

timing errors.

Vulnerability Analysis: Approaches presented here

assess the vulnerability, or sensitivity, of unit(s) of a
program to variations: instruction-, sequence-, and

procedure-level vulnerability. Fig. 5 shows that the order

of instructions can impact the worst case circuit delay dis-

tribution of an ALU [21]. This program-specific detail

opens the door to code transformation for improving the

timing resiliency. For instance, sometimes an OR instruc-

tion is exchanged with a SUB instruction that improves

the worst case circuit delay distribution of the ALU signif-
icantly [21]. In the same vein, instruction-level vulnerabil-

ity (ILV) [20] and sequence-level vulnerability (SLV) [23]

are proposed to estimate the vulnerability of an instruc-

tion or a sequence of instructions to the timing errors.

The ILV partitions the instruction set based on the delay

distribution into three classes shown in Fig. 6; the higher

delay, the higher likelihood of a timing failure, the higher

Fig. 5.Worst case ALU delay distribution for different instruction

sequences [21]. (a) Original graph. (b) Reordered graph 1.

(c) Reordered graph 2. (d) ALU delay distribution.

6 Proceedings of the IEEE |

Rahimi et al.: Variability Mitigation in Nanometer CMOS Integrated Systems

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ILV. All the instructions within a class exhibit almost

equal ILV. The ILV classification shows for the integer

SPARC V8 instructions, the vulnerability of the ALU in-

structions is slightly lower than the memory instructions;

the memory instructions also have a lower marginal vul-

nerability compared to the hardware multiplication and
division (HW MUL/DIV) [20]. This is mainly because the

path delay distribution of the exercised parts by a class of

instruction is such that most of the paths have the same

length, then we have an all-or-nothing effect, which im-

plies that either all instructions within that class fail or all

make it [20].

Considering a stream of instructions, the SLV clas-

sifies them into two classes: Class-I (only the ALU in-
structions), and Class-II (the rest of integer instructions,

including the memory, the HW MUL/DIV, and control

instructions). Based on SLV values, the vulnerability of

the Class-I is lower than (or equal of) the Class-II [23];

this means that the Class-I requires a lower guardband

compared to the Class-II. Fig. 6 summarizes the ILV and

the SLV classifications. Compiler can benefit from these

classifications to enhance the code resiliency. For in-
stance, loop unrolling is a loop transformation technique

that attempts to increase speed of a program by reducing

instructions that control the loop. It increases the num-

ber of ALU instructions with regard to the memory and

control flow instructions, at the expense of register pres-

sure and program size. Therefore, applying the loop un-

rolling produces a longer chain of the ALU instructions,

and as a result the percentage of sequences of Class-I is
increased up to 41% and on average 31% for programs in

EEMBC AutoBench [54] suite of benchmarks. Hence, an

adaptive guardbanding can benefit from this compiler

transformation technique to further reduce the guard-

band for the sequences of Class-I.

The aforementioned efforts strive to establish a link

between the blocks of a processor that are activated dur-

ing execution of an instruction or a sequence of instruc-
tions, to the observed timing errors. However, the

sensitivity of the instructions to the timing errors is also

impacted by the circuit block topology, structure, synthe-

sis optimization strategies, technology, and workload.

For instance, a hierarchical ALU displays a large

difference between the instruction delays, whereas all in-
struction pairs (consecutive instructions) exhibit almost

the same amount of delay in a high-performance ALU

without hierarchies [22]. The latter is aligned with the

all-or-nothing effect that is observed across the classes of

SPARC V8 instructions: either all instructions within

that class fail or all make it [20], [23]. Similarly, another

observation on an ARM Cortex-M0 core shows that the

number of timing errors increases dramatically after the
first failing operating point [55]. This is mainly because

the number of potential faulty flip-flops increases quickly

with the scaled clock period. More than 50% of flip-flops

are critical for a 10% timing slack which could wipe out

the benefits of VOS or over clocking after the critical op-

erating point [55].

Going further up on the software stack, a recent

work exploits variations in the voltage droops among dif-
ferent procedure calls to form a runtime preventive pro-

cedure hopping [24]. During a characterization phase,

the probability of voltage droops on different combina-

tions of voltage/temperature (V/T) of a core is character-

ized at the level of procedures, where the problematic

sequences of instructions [23], [56] could exist. This

characterized metadata is then attached to each proce-

dure at compile time, to be able to use it for runtime de-
cisions about finding the best location to execute the

procedure among available V/T-islands within a cluster

of cores. Results show that the procedure hopping avoids

the critical voltage droops during the execution of all

procedures while incurring less than 1% latency penalty

for migration of procedures [24].

Uniform Workload Allocation: The techniques apply

adaptive workload allocation to address the nonuniform
device aging. An idleness distribution technique applies

idle cycles for fatigued cores to compensates the effects

of aging and therefore avoiding the permanent failure

[25]. This workload allocation technique mitigates aging-

induced unbalanced cores lifetimes by means of core ac-

tivity duty cycling on a multicore platform. Another

work identifies fatigued resources using NBTI monitor-

ing [57] in a VLIW architecture [26]. Then a compiler-
directed scheme periodically shifts the instructions stress

from a fatigued VLIW slot to a young one. It correlates

the hardware stress time with instructions distribution,

and equalizes the expected lifetime of each VLIW slot by

regenerating healthy kernels that respond to the specific

health state of the aged hardware [26].

Hierarchically Focused Guardbanding: A notion of hi-

erarchically focused guardbanding to adaptively mitigate
PVT variations and aging is proposed [27]. The method

is guided by an online utilization of characterized

models, and enables a focused adaptive guardbanding in

view of monitors, observation granularity, and reaction

times. The effectiveness has been shown at two levels of

observation and adaptation: 1) applying adaptive guard-

banding at granularity of kernel-level by employing

Fig. 6. ILV and SLV classifications for the integer SPARC V8 ISA [23].

| Proceedings of the IEEE 7

Rahimi et al.: Variability Mitigation in Nanometer CMOS Integrated Systems

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

coarse-grained monitors; and 2) the finer granularity of
instruction-level monitoring that adapts guardband de-

pending on the monitors configuration and the type of

instructions executed within the kernels.

B. Detecting and Correcting Timing Errors
As an alternative to earlier methods in Section III-A

that seek to prevent timing errors from happening, in

this section we examine techniques that work through

the timing errors. Presented approaches here allow the

timing errors to occur by operating at the edge of failure.

Operating at the edge of failure further reduces the

guardband. To combat the timing errors, these ap-
proaches require two main mechanisms: 1) an error de-

tection mechanism: a mechanism to detect the incorrect

state values caused by the timing errors; and 2) an error

correction mechanism: a mechanism that is triggered

upon an error detection to compensate the effects of er-

rors during system operation. Not all timing errors need

to be corrected. Only those errors that have an observ-

able effect on resulting computation. In that sense, these
approaches are a bit more flexible in their use and im-

pact. Table 4 lists these approaches at different levels.

Focusing on hardware approaches, Section III-B1 zooms

in the circuit solutions, while Section III-B2 moves to

the architectural techniques. The last two sections cover

the software and application/algorithm approaches.

1) Circuit: These circuit-level techniques typically uti-
lize circuit sensors for timing errors detection, and apply

temporal or logical (spatial) error masking. We first de-

scribe the mechanism of circuit sensors followed by de-

tails of temporal and logical error masking. A common

strategy of the circuit sensors is to detect variability-

induced delays by sampling and comparing signals near

the clock edge to detect the timing errors [75], [90]. The

detection is implemented by the insertion of a delay to
the clock or data line. To do so, two consecutive samples

are captured and in case of a mismatch between the sam-

ples an ERROR signal is generated meaning that a timing

error caused storing an invalid state. Let us focus on one

of these circuit sensors: error-detection sequential (EDS)

[89]. A resilient circuit can be constructed by replacing

typical flip-flops [see Fig. 7(a)] with EDS circuits [see

Fig. 7(c)] on the critical paths. The EDS circuit is a
double-sampling with a time-borrowing latch design

which consists of a flip-flop, a shadow latch, and an XOR

gate. The main flip-flop and the shadow latch sample the

input data on the rising and falling clock edges, respec-

tively. The XOR logic gate compares the latch and flip-

flop outputs to generate the ERROR signal as shown in

Fig. 7(d). If the input data arrives late, with respect to

the clock signal, due to any type of variations, it cannot
meet the setup time of the flip-flop; as a result, the latch

and flip-flop outputs differ, resulting in rising the ER-

ROR signal. This generated ERROR signal can be propa-

gated the rest of chip to invalidate the erroneously

executed operation and trigger a proper recovery for cor-

rection. The error corrections are twofold: temporal and

logical error masking.

Temporal Error Masking: To compensate the timing
errors, temporal techniques tune timing references either

by clock signal adjustment or by time borrowing. For ex-

ample, the clock phase is controlled based on the mea-

sured timing slack [80]. As an architectural-independent

technique, the global clock gating is used with Razor

[75]. Upon an error detection, the global clock gating sig-

nal stalls the entire pipeline and then reloads the correct

valid state into flip-flops. However, this technique does
not scale well since the global signal has to be propa-

gated across the entire chip in one cycle. Bubble Razor

[81] utilizes a two-phase latch as opposed to the flip-flop.

Table 4 Detecting and Correcting Timing Errors: Abstractions Versus Approaches

8 Proceedings of the IEEE |

Rahimi et al.: Variability Mitigation in Nanometer CMOS Integrated Systems

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Upon an error detection, Bubble Razor propagates

bubbles to the neighboring latches as the clock gating

control signals. The bubble propagation implements a lo-

cal stalling scheme providing one extra cycle for correct
data to arrive. Although Bubble Razor offers 1-cycle error

correction, it can only be used for the two-phase latch

based designs [81]. To address this concern, another lo-

cal stalling technique is proposed in [82] which has the

same penalty cost as Bubble Razor, but can be used in

the flip-flop or pulsed-latch based designs.

Two sequential circuits are proposed that enable time

borrowing: TIMBER flip-flop and TIMBER latch [83],
[84]. TIMBER masks the timing errors by borrowing time

from successive pipeline stages. References [85] and [86]

present a more systematic time borrowing method that is

composed of a special flip-flop (with a time-borrowing de-

tection) and a clock shifter. The time-borrowing flip-flop

uses clock shifter circuits to allow time borrowing on the

critical paths, generates time-borrow signal for clock

shifter to stretch the clock period. This pays back the
borrowed time in the next clock cycle; therefore, no

error recovery is needed.

Logical Error Masking: These spatial techniques repli-
cate logic so in case of a timing error, the error-free output

of the replicated version can be reused instead. A nonintru-

sive redundant circuit is implemented by synthesizing the

Boolean function that represents the critical paths [87].

The synthesized circuit has at least 20% timing slack over
the original logic circuit guaranteeing its immunity to tim-

ing errors. Another work introduces in situ fine-grained re-

dundant approximation circuit that exhibits improved

timing slack compared to the original circuit [88]. The ap-

proximate circuit can be constructed by simple structural

analysis of the original circuit. It implements the spatial er-

ror masking by creating a logically-equivalent yet timing-

improved circuit. A 10-lane SIMD core considers 2 spare

lanes to mitigate the impact of process variation [19]. To

utilize this coarse-grained spatial redundancy, a lane weav-

ing technique is applied for each pipeline stage. The lane
weaving bypasses a slow stage in a lane by routing the lane

to one of neighbor lanes, either on the left or right [19].

2) Architecture: Architectural approaches to variability

mitigation enhance resiliency, including tuning compo-

nents through adaptive voltage/frequency/latency set-

tings, backward error recovery, and ISA extension. These

approaches are designed with availability of the circuit
sensors (e.g., Razor [75] and EDS [89]) in mind.

Tunable Structures: These techniques adopt similar

temporal and spatial techniques, as presented in

Section III-B1, plus voltage adjustment but with a focus

to a particular architectural structure. Reference [71] pre-

sents a mixed voltage interpolation and variable latency

technique with emphasis on floating-point units (FPUs).

The per-stage voltage interpolation chooses different volt-
age configurations among high VDD and low VDD that can

tune the clock frequency of the pipelineVsmall difference

between high VDD and low VDD eliminates the overhead of

level shifters. At a coarser granularity, local adaptive VDD
hopping [91], [92] is applied for individual core. The VDD
hopping chooses one of the three discrete voltages based

on online variability measurements reported by both

Razor and ring oscillators. Reference [72] implements cy-
cle time stealing which applies another form of time bor-

rowing by transferring the timing slack of the faster stages

to the slow ones by skewing clock arrival times.

Memory subsystem, spanning on-chip caches to

SRAM memory banks, have been target of architecture

level variability management. Common to these methods

is level of redundancy and dynamic sizing of memory

Fig. 7. (a) Conventional flip-flop at endpoint of critical path; (b) timing diagrams for variations and nominal conditions;

(c) error-detection sequential (EDS) circuit is replaced with flip-flop at endpoint of critical path to enable resiliency;

and (d) late arriving input data and error detection [89].

| Proceedings of the IEEE 9

Rahimi et al.: Variability Mitigation in Nanometer CMOS Integrated Systems

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

blocks. For instance, to mitigate the variations among L1
banks, a technique adds variable latency stages into the

path from the cores to the memory banks [18]. This

variation-tolerant architecture also supports a reconfigur-

able address-interleaving to bypass some of the slow

memory blocks. Focusing on the error tolerance within a

cache block, a technique replaces faulty cells due to pro-

cess variation by dynamically downsizing the cache [74].

A recent work [73] characterizes the nature of bit faults
during VOS for the SRAM-based cache on test chips

manufactured in a 45 nm technology [93]. They observe

that in the process variation-affected SRAMs, the bits

that fail at some voltage level will also fail at all lower

voltages [73]. Therefore, a simple and low-overhead fault

tolerance cache is proposed that supports few VDD levels

for the data array SRAM cells.

Restoring to a Preerror State or Reexecution: When a
timing error is detected, these approaches trigger a series

of architectural activities to recover from the timing er-

rors. For instance, once a timing error is detected during

an instruction execution, the Intel resilient core [44]

prevents the errant instruction from corrupting the ar-

chitectural state and an error control unit (ECU) initially

flushes the pipeline to resolve any complex bypass regis-

ter issues. To ensure a scalable error recovery, ECU re-
plays the errant instruction multiple times at the same

clock frequency (multiple-issue instruction replay). It has

a recovery cost of 3� N cycles where N is the number of

pipeline stages. Similarly, in counterflow pipelining

when an error is occurred within a stage, the stage sends

a bubble toward end of pipeline stages and a flush to-

ward head of pipeline stages (the fetch stage). Both bub-

ble and flush signals are propagated cycle by cycle. The
recovery penalty per error correction is 2� K cycles

where K is the order of the stage, which detects an error

in the pipeline. Micro-rollback is another technique that

locates private queue per each pipeline stage [76]. After

an error-free execution of an instruction, the queues save

a snapshot (i.e., operands and results). In case of an er-

ror, the snapshot can be reloaded into the pipeline and

therefore the instructions can be restarted at their last
known correct state. Checkpoint-restart has the similar

trend but for a coarser granularity which often imposes

high overhead. Special hardware structures are added to

a core to support speculative execution for reducing the

cost of checkpoint-restart [77].

Isolation and Independent Recovery: In the lock-step

execution, any timing error within any of the lanes will

cause a global stall to force recovery of the entire SIMD
pipeline. Techniques are proposed to decouple the lanes

through private queues that prevent the error events in

any single lane from stalling all other lanes [19], [78].

This trick enables each lane to recover from the errors

independently while causing slip between the lanes

which requires additional architectural mechanisms to

ensure the correct execution. Memoization techniques

presented in Sections IV-B2 and VII-D address recovery
issues for SIMD and GPGPU architectures.

ISA Extension: Ultra-reduced instruction set copro-

cessors (URISC) [79] extends a MIPS processor with a

coprocessor that implements a new instruction called

SUBLEQ. URISC executes the sequences of SUBLEQ
that are semantically equivalent to any faulty instruction.

3) Software: Workload scheduling and memory alloca-
tion have been already deployed in the software to ad-

dress various concerns in cores and memory subsystems.

These two software modules can take into account the

timing errors to ensure reliable operation. 1) Scheduling

techniques guarantee reliable execution on the cores

typically through replication and redundancy. 2) Variability-

aware memory allocation adapts to the underlying varia-

tions in the memory modules and virtualizes the memory
hierarchy for efficient address-space partitioning.

Scheduling: A loosely coupled triple modular redun-

dancy (TMR) scheme for cluster-based many-core accel-

erators [52] is presented in [66]. The cluster controller

blindly generates three replicas of the main thread for

error detection and then a voting is applied to choose

the correct result. Another dynamic TMR technique for

reliable OpenMP tasking is presented in [65]. Program-
mer needs to annotate a reliable task through extended

OpenMP task construct with a reliable clause, #pragma
omp task reliable. To assure error tolerance on
the cores, when a parent task creates a reliable child task
into the runtime environment, it will dynamically repli-
cate and submit three redundant children tasks for execu-
tion. Among the redundant executions a majority voting
is applied for the error detection and correction [65]. An
OS support for redundant multithreading is also proposed
to detect and correct the errors during the execution of
user-level applications using TMR [67]. Moving the focus
from tasks to loops, a fault-tolerant loop scheduling
scheme without checkpointing is presented [68]. A loop
is transformed to ensure the correctness of the reexecu-
tion of loop iterations by buffering variables with anti-
dependency.

Memory Virtualization: Variability-aware memory

virtualization layer allows marking regions of memory

through annotations [69]. Programmers apply annota-

tions using high-level API to guide the OS. The memory

virtualization layer partitions the memory space based on

the power/performance characteristics, for instance,

voltage scaled SRAMs, nominal VDD on-chip memories,

low-power and high-power DRAMs [69]. This offers an
opportunity to programmers for partitioning their appli-

cation’s address space into virtual address regions with

different characteristics. For each annotated region, a

mapping policy can be implemented to drive the dy-

namic variability-aware memory allocation. This method

can opportunistically exploit for instance DRAM power

variations through physical address zoning [70].

10 Proceedings of the IEEE |

Rahimi et al.: Variability Mitigation in Nanometer CMOS Integrated Systems

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4) Application/Algorithm: Approaches based on applica-

tion and algorithm exploit algorithmic knowledge pro-

vided by a domain expert, or special coding to enhance

application resiliency.

Algorithmic-Based Knowledge: These approaches rely

on knowledge from the application domain experts.

Algorithm-based fault tolerance is a system level ap-
proach that exploits some basic properties of computa-

tions to check the correctness of the computed output

values [58], [59]. An important target of such optimiza-

tions are matrix operations. This scheme is used to de-

tect and correct errors during matrix operations as the

heart of many computation-intensive algorithms [58].

For multimedia applications, in-built error resiliency

techniques can be used at the decoder to detect and cor-
rect for encoder induced errors [60]. Focusing only on

error detection, assertions and invariant checks can be

inserted based on algorithmic knowledge [61], [62]. The

executable assertions aim to detect data errors by track-

ing a variable during a test procedure. Focusing only on

algorithmic error correction, a partial recomputation-

based approach is presented [63]. The partial recomputa-

tion-based approach identifies partitions of faulty and
nonfaulty outputs through error localization. This lowers

the high cost of recovery in traditional fault tolerance

approaches, e.g., checkpoint-restart [77].

Error Correction Codes: To protect data in applica-

tions, the error pattern can be observed and character-

ized. Based upon that an appropriate error correction

coding scheme can be applied to protect the memory

subsystem. Data collected from a triple level cell Flash
device demonstrates that the vast majority of cell-errors

only had a single bit in error (errors affect 1 of the 3 bits

of information) [64]. This observation leads to a new

error correction code, based upon generalized tensor

product codes, that enhances resiliency of Flash memory.

C. Accepting Timing Errors
In this section, we describe a new class of approaches

that have a relaxed behaviour toward the timing error

handling. The aforementioned methods in Section III-A

and B strive to achieve instruction executions exactly as

specified by the application programs. In contrast,

probabilistic or approximate programs can exhibit en-

hanced error resilience for applications when multiple

valid output values are permitted. Conceptually, such

programs have a vector of ‘elastic outputs’, and if execu-

tion is not 100% numerically correct, the program can
still appear to execute correctly from the user’s perspec-

tive. Programs with elastic outputs have application-

dependent fidelity metrics, such as peak signal to noise

ratio, associated with them to mathematically character-

ize the quality of the computational result. The degrada-

tion of output quality for such applications is acceptable

if the fidelity metrics satisfy a certain threshold. This

provides an opportunity for ignoring the effect of timing
errors as long as such errors do not lead to program fail-

ures, crashes, or hangs. Table 5 illustrates these tech-

niques with spacial emphasis on application/algorithm,

architecture, and circuit levels.

1) Circuit: Circuit-level approaches mostly focus on

various design paradigms to synthesize circuits that pro-

duce approximate (inexact) results. Such approximate
circuits have been used earlier to speedup performance

and reduce the latency of computation [104]. The main

application of such approximate circuit, or inexact cir-

cuit, is to reduce power, area, and complexity in ex-

change for a small loss of precision. For instance, an

statistical approach can prune the logic gates of an adder

based on the statistics of the data to be processed [105].

Different sets of design time techniques to generate the
approximate circuit are reviewed in [105].

A synthesis methodology is also proposed to relax a

circuit by ignoring the timing constraints on a subset of

paths that are bottlenecks to retiming [53]. The resultant

relaxed circuit shifts the path wall to a lower delay en-

abling additional VOS. This increases the range of VOS

in which the timing error rate is acceptable [53]. A care-

ful path relaxation could lead to graceful quality degrada-
tion (i.e., acceptable output) since not all intermediate

computations are equally important. For instance, the

Table 5 Accepting Timing Errors: Abstractions Versus Approaches

| Proceedings of the IEEE 11

Rahimi et al.: Variability Mitigation in Nanometer CMOS Integrated Systems

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

paths that slightly contribute to PSNR improvement are
relaxed in a DCT architecture [53]. Another technique

is also proposed for the timing error acceptance in

DCT/IDCT components [107]. This technique improves

the quality-energy tradeoff in the VOS regime.

2) Architecture: When acting errors at the architectural

level, the goal is to use relaxed specifications on compo-

nents that can support approximation during execution
and storage. Some approaches focus on a coarse-grained

region of computation that is amenable for approximation

[99]–[102]. The approximable region is then offloaded to

a designated unit that uses less reliable cores, or VOS

blocks, or neural processing elements. A methodology is

proposed to enable VOS by generating approximate hard-

ware blocks for meta-functions [99]. Meta-functions rep-

resent computational kernels commonly found in various
application domains [99]. Application profiling has been

used to train a neural network to mimic a region of ap-

plication code [101]. The generated neural processing

cores are coupled with the processor to enable VOS. In

the same vein, a relaxed fault-tolerance is applied for im-

plementation of a face-recognition neural network [102].

Error resilient system architecture (ERSA) is suited for ap-

plications consisting of a set of coarse-grained isolated
tasks that can be expressed entirely with approximate com-

putation [100]. ERSA isolates execution of an approximable

data-intensive task from a control-intensive task. The for-

mer is executed on an array of relaxed reliability cores,

while the latter is executed on a super reliable core.

Focusing on approximate storage, a recent writing

mechanism enables applications to store data approxi-

mately [103]. It trades off accuracy for performance in
multilevel cell accesses and leverages worn-out memory

for approximate data instead of ignoring the cell.

3) Software: At the software level, accepting errors

where possible naturally makes an execution inexact or

approximate. The important question here how we dis-

tinguish such a computation from an exact one, and

when/under what conditions is it acceptable? For in-
stance, synchronization is a major bottleneck in scaling

parallel programs. Relaxing synchronization points can

be achieved through a program restructuring called relax

[97], and check that systematically trades off quality re-

sults for performance. Similarly, atomic operations are

relaxed in CUDA programs running in GPUs [98].

Atomic operations are typically used in sorting and re-

duction where threads must sequentialize writes to a var-
iable. A compiler technique selectively bypasses atomic

operations to generate a set of CUDA kernels with vary-

ing levels of approximation [98].

4) Application/Algorithm: These approaches enable the

error tolerance at higher algorithmic level and program

transformation. Reference [94] proposes a system called

Green that allows programmers to approximate expen-
sive functions and loops in a systematic manner. Green

trades off quality of service for improvements in energy

consumption, while providing statistical quality of service

guarantees. Focusing on the loops, loop perforation [95]

trades accuracy for performance by transforming loops to

limit execution of a subset of their iterations. The tech-

nique distinguishes critical loops versus tunable loops.

The loop perforation is only applied on the tunable loops
whose perforation produces more efficient and still ac-

ceptable accuracy. Reference [96] proposes a new ap-

proach for program transformation that utilizes

probabilistic reasoning as opposed to the use of standard

discrete logical reasoning. The approach provides proba-

bilistic guarantees for the results of the transformed pro-

gram such that the deviation from the original program

will rarely be large.

IV. HYBRID APPROACHES

This section presents two new classes of approaches for

the variability-tolerance: hybrid and cross-layer ap-

proaches. Hybrid approach fuses the aforementioned ap-

proaches of error handling, i.e., the three axis of Y-chart

in Fig. 4. Combining these three approaches creates two
sets of new hybrid approaches: 1) predicting and pre-

venting with detecting and correcting timing errors de-

scribed in Section IV-A; 2) detecting and correcting with

accepting timing errors described in Section IV-B. Table 6

summarizes these hybrid approaches. On the other hand,

cross-layer variability-tolerance can be realized by ex-

changing information across the layers of abstraction, i.e.,

the concentric rings in Fig. 4. Section IV-C covers these
cross-layer approaches. The hybrid and cross-layer ap-

proaches enhance the scope of timing error handling and

its efficiency.

A. Predicting and Preventing With Detecting and
Correcting Timing Errors

In this section, we describe a class of hybrid ap-

proaches that mix the prediction and prevention ap-
proach (see Section III-A) with the detection and

correction approach (see Section III-B). The resulting hy-

brid approach relies upon both design time analysis to

prevent most of probable timing errors and runtime mea-

surement to correct any unforeseen timing error.

1) Circuit: Recovery-driven design is a design time ap-

proach that focuses on optimization of a core for a target
timing error rate instead of the worst case design [132].

This design time optimizations can benefit from

uncertainty-aware [45], and slack redistribution [46] tech-

niques. The recovery-driven design also utilizes an online

error recovery to correct the timing errors that are allowed

to appear intentionally because of VOS. Reference [133]

presents a forward timing error correction approach that

12 Proceedings of the IEEE |

Rahimi et al.: Variability Mitigation in Nanometer CMOS Integrated Systems

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

enhances the scope of TIMBER [83], [84] and time bor-
rowing techniques [85], [86] without involving complex

clock control. The approach synthesizes a timing error

effect prediction logic based on Boolean differential

equation to predict whether the timing errors occurred

on a set of flip-flops would propagate to the next stage.

In case of propagation, the errors are corrected system-

atically within the logic without time borrowing. An ap-

proximation method is proposed that focuses on
circuit-level speculation for predicting results [134]. The

approximation circuit implements a given logic function

partially for reducing the logic delay of a stage. The ap-

proximated results are used to advance the pipeline. In

case of a mismatch between the approximate result and

exact resultVcomputed by a duplicated logic functionVa

recovery mechanism is triggered to correct the effects of

speculative executions.

2) Architecture: [119] provides an interleaved method

that learns to predict the timing errors or corrects them

if the prediction does not work. It has been achieved by

partitioning the timing errors, that are induced by volt-

age droops, into predictable and unpredictable groups.

This approach handles the predictable timing errors by

avoiding voltage droops that are correlated with micro-
architectural events, similar to preventive method dis-

cussed in [30]. The residual unpredictable errors are

handled by a checkpoint-rollback mechanism. Further, it

has been shown that microarchitecture and compiler

collaborative design can lead to a cost-effective solution

for dynamic voltage variations in commodity processors

[120]. The work also provides a broad overview of

possible directions to deal with voltage droops presented
in [30], [110], [111], [119]. A design time methodology

is presented in [121] to partition a given system-on-a-

chip into recovery islands. Each island can therefore be

recovered independently during operations.

3) Software: Software approaches can take into ac-

count the spatio–temporal effects of variability to reduce

the overall cost of computation. These hybrid methods
are divided into two main groups. The first group strives

to improve resiliency of the program through a code

transformer, while the second group improves scheduler

to decide about a more reliable location for executing a

given workload. Variability-aware workload scheduling

monitors the variations and accordingly assigns work-

loads to proper computing cores for reducing the cost of

error detection and correction. This can be extended to
realize variability-aware memory allocation [69], [70] for

adapting to the spatiotemporal variable memory modules.

Fig. 8 shows integration of the variability-aware sched-

uler and memory allocator.

Code Transformations: These approaches probe an

error prone region of the code, and then try to reshape it
such that the code region exhibit lower errors. A recent

work [56] makes the observation that some sequence of
instructions can have a significant impact on the timing

error rate. Consequently a code transformation is intro-

duced which pads the instructions sequence with a NOP
instruction. The NOP padding eliminates the critical path
activation since the result is no longer forwarded directly
from the execution stage. The ISA extension can further
enhance the ability of a code transformer. For instance,

Table 6 Abstractions Versus Hybrid Approaches

| Proceedings of the IEEE 13

Rahimi et al.: Variability Mitigation in Nanometer CMOS Integrated Systems

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

[56] introduces BRINC instruction (broken increment)
that performs addition in the lowest 4 bits of the operand,
making it a more robust candidate for index computation
in the unrolled loops. A code optimizer extracts problem-
atic code sequences that cause the voltage droops, then
the optimizer rearranges the instructions such that the
voltage droops are suppressed [110].

Scheduling: Moving toward multicore architectures

opens a choice for scheduling workload on cores such

that the likelihood of timing errors will be reduced. In

this trend, the voltage droop resiliency techniques are ex-

tended to multicore architectures. For example, a thread

scheduler exploits the voltage droops phases to enhance

scheduling decisions for smoothing out the voltage droops
among the cores [111]. A variability-aware task dispatch-

ing technique enhances predictability and energy effi-

ciency for multimedia streaming applications running on

parallel multiprocessor arrays [112]. For processor clus-

ters, a variation-aware task scheduling policy for OpenMP

is presented in [113]. The OpenMP runtime environment

computes metadata as the vulnerability of a task execu-

tion on a core, and uses this characterized information to
reduce the timing error rate for the next task scheduling

point. The variation-aware OpenMP is further extended

to cover various constructs, including parallel sections

and loops [115]. Using the notion of work-unit vulnerabil-

ity, the timing errors are captured as descriptive metadata

to characterize the impact of variability on different

work-unit types running on various cores. As such, work-

unit vulnerability provides a useful abstraction of hard-

ware variability to efficiently allocate a given work-unit to

a suitable core for execution [115].

Moving to GPUs, a recent work characterizes each

application sensitivity to within-die frequency variations

in the context of spatial multitasking [116]. The sensi-
tivity information partitions the workload and enables

variation-aware allocation of the resources to

concurrently-executing applications on a GPU [116]. In

large-scale Web services, the hardware variability com-

bined with other shared resource issues can prevent the

system to response to user actions quickly [117]. There-

fore the role of software techniques to tolerate latency

variability is crucial to realize systems so-called latency
tail-tolerant [117].

4) Application/Algorithm: A new method is presented

for adapting the application’s algorithm at the software

layer that can reduce the impact of the timing errors in-

duced by process variation [108]. This enables an appli-

cation to support multiple choices denoted by a software

configuration set. Each configuration displays different
performance and quality. Under process variation, an op-

timal software configuration can be chosen to maximize

the application quality while meeting the performance

constraints. This software configurations approach [108]

is suitable for applications that are reconfigurable and

adaptive, e.g., video encoding and decoding, multimedia

stream mining, gaming, and embedded sensing.

Fig. 8. Variability-aware scheduler and memory allocator to combat spatiotemporal variations in processing elements and

memory banks.

14 Proceedings of the IEEE |

Rahimi et al.: Variability Mitigation in Nanometer CMOS Integrated Systems

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

B. Detecting and Correcting With Accepting
Timing Errors

In this section, we describe another class of hybrid ap-

proaches that mixes the detection and correction ap-

proach (see Section III-B) with the error acceptance

approach (see Section III-C). The resulting hybrid ap-

proach detects timing errors and corrects them when it is

necessary, or neglects them and ensures safety through a

set of rules.

1) Circuit: The circuit techniques in this area offer

either a configurable block that its precession can be

selected during runtime, or provide a new way of han-

dling timing errors with approximate operations.

Accuracy-Configurable Blocks: An accuracy-configurable
integer adder offers two operating modes: exact and ap-

proximate [135]. During the exact operating mode the er-
ror detection and correction has to be applied, while in

the approximate mode the errors can be ignored and left

out uncorrected. The approximate mode has been imple-

mented by power-gating the error correction module

during execution of approximate operations [135].

Moving from the integer to single precision floating-

point, a reconfigurable FPU dynamically switches be-

tween the accurate and approximate modes [118]. The
approximate mode ignores the timing errors on the less

significant N bits of the fraction part where N is repro-

grammable memory-mapped register. The choice of oper-

ating mode is driven by the application requirement of

the computational accuracy.

Approximate Error Handling: An approximate error

correction method minimizes the error magnitude of large

timing errors making it suitable for DSP accelerators
[136], [137]. Upon an error detection, the approximate

error correction stage corrects the error by generating an

approximate response computed by interpolating both

forward and backward samples. The backwards samples

are collected by output buffers and the forward sample is

approximately derived by pipeline lookahead.

Approximate concurrent error detection circuit is a

nonintrusive technique which does not impose perfor-
mance penalty for error detection [138]. Concurrent er-

ror masking based on approximate circuit [139] is able to

mask errors dynamically and therefore there is no cost

for recovery, for instance the rollback or the replay. A

synthesis flow is then proposed to derive such approxi-

mate circuits that can target a specified input space for

prediction and masking [139].

2) Architecture: Architectural approaches allow coexis-

tence of exact and approximate instructions either by

providing an ISA extension, or by applying different con-

straints for computational reuse. Memory blocks can also

offer mixed cells with different levels of accuracy.

ISA Extension: Truffle [122] is a dual-voltage micro-

architecture design that supports mapping of

approximate EnerJ [140] programs through ISA exten-
sions. It applies a high voltage for exact operations and a

low voltage for approximate operations. Truffle dupli-

cates all the functional units in the execution stage. Half

of them are hardwired to a high voltage for executing

the exact operations, while the other half operate at a

low voltage for executing the approximate operations.

Memoization: Dynamic instruction reuse enables re-

calling of the outcome of an instruction in hardware tables,
so a processor can reuse it temporally if the processor per-

forms the same instruction with the same input values

within a limited period of time before the entry is over-

written. To improve the hit rate of the table, recent reuse

techniques [123], [124] seek to improve association of the

entries of the table with similar inputs to the same output.

These tolerant techniques rely upon the tolerance in the

output precision of the multimedia algorithms to achieve
high reuse rates, and work at the granularity of a FP in-

struction [123], or a region of dynamic FP instructions

[124]. The dynamic tolerant region reuse is a method based

on relaxing the conditions upon skipping regions of in-

structions by caching results of previous equal and also

similar inputs [124]. Spatial memoization [125] and tempo-

ral memoization [126] techniques are proposed to use

value locality inside data-parallel programs. These tech-
niques recall (memorize) the context of error-free execu-

tion of an instruction, and then reuse the context to

correct an errant instruction based on a matching con-

straint. Two matching constraints are considered: 1) exact

matching constraint that enforces full bit-by-bit matching

of the operands; and 2) approximate matching that relaxes

the criteria of the exact matching during comparison of the

operands by masking the less significant N bits of the frac-
tion parts. Another method increases spatiotemporal reuse

of computational effort by utilizing nonvolatile associative

memory modules (AMMs), particularly resistive memory-

based computing [127], [128]. A profiling phase identifies

frequent redundant computations, carefully prestore these

key computations in the AMMs, and reuse them to avoid

reexecutions.

Approximate Memories With Asymmetric Robustness:
A mixed-cell cache architecture is proposed by allowing

the use of both robust and nonrobust cells [129]. In the

mixed-cell cache, nonrobust cache lines are more suscep-

tible to failures at low voltage, while robust lines are

resilient to such failures by using error-detection mecha-

nisms (e.g., parity). A recent work applies aggressive

voltage scaling (below the minimum VDD) to the SRAM

cells by exploiting features of the stored data in a given
multimedia application [130]. The resulting errors are ac-

ceptable based on the produced image quality. Another

example of energy versus data integrity tradeoffs is ap-

plied for embedded DRAMs [131]. It aims to reduce the

very frequent refresh rate of DRAMs by revealing the

statistical characteristics of the retention time, in addi-

tion to exploiting the error resilient nature applications.

| Proceedings of the IEEE 15

Rahimi et al.: Variability Mitigation in Nanometer CMOS Integrated Systems

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

3) Software: There have been approximate extensions
to OpenMP through a set of extended custom directives1

that allows a programmer to specify parts of a program

that can be executed approximately or exactly [118]. A

profiling technique is used to identify thresholds for tol-

erable error significance and error rate. This information

guides OpenMP runtime scheduler to promotes execu-

tion units to accurate mode, or demotes them to approxi-

mate mode depending upon the annotated code region
requirement.

4) Application/Algorithm: An algorithmic technique for

error detection suitable for sparse problems is proposed in

[109]. Sparse problems are often well structured, provid-

ing an opportunity for low-cost error detection through

sampling. Only a representative random sample of the

computations can be checked for error detection without
missing major unseen errors. To do so, approximate ran-

dom checking and approximate clustered checking are im-

plemented for sparse linear algebra applications [109].

The former randomly samples the problem, and the latter

performs sampling based on the problem’s structure.

C. Cross-Layer Variability-Tolerance
As it has been shown in Fig. 4 and Table 6, the vari-

ability can be handled at a specific layer. A system can
implement the variability-tolerance technique using only

a few layers of the system stack that simplifies the design

of other layers at the expense of higher cost. On the con-

trary, cross-layer resilient systems distribute the respon-

sibility for the error handling across the system stack,

and can utilize available information at each level in the

system stack to increase the computational efficiency

[141]–[146]. Breaking rigid interfaces between the layers
leads to more efficient computing systems where the

hardware variability, instead of being hidden behind con-

servative specifications, is exposed to multiple layers of

the system including circuit, architecture, software, and

applications. For instance, underdesigned and opportu-

nistic computing machines propose to explore the possi-

bility of constructing computing machines that purposely

expose hardware variations to various layers of the sys-
tem stack including software [141]. This leads to flexible

hardware-software stack and interface that use adapta-

tion in software to relax the variation-induced guard-

banding in the hardware design. Underdesigned and

opportunistic machines take several ways to implement

adaptation ranging from hardware power management to

just-in-time recompilation strategies [141].

Bringing the soft errors into picture, dependable em-
bedded systems consider involving several layers of the

abstraction including hardware, system software and OS,

and application [145]. The pyramid of dependable

embedded hardware/software systems require to cooper-
ate among layers to address adaptability of reliable sys-

tems. In a similar vein, to meet the application

requirements a self-aware computing model exposes mea-

surements and adaptation that traditionally are handled

solely by hardware [147]. Such exposure allows hardware

adaptations that can be specified by other parts of the sys-

tem. A runtime decision system then coordinates with

other, software based actions to use the available actions
to meet application requirements with lower cost.

V. OBSERVABILITY AND
CONTROLLABILITY

An adaptive system can be characterized by an observe-

decide-action loop. Observability is a measure for how

well internal states of a system can be inferred by knowl-
edge of its external outputs measures. Given the current

state of the system a decision is made to meet the goal.

Controllability denotes the ability to move a system

around in its entire configuration space using only cer-

tain admissible manipulations. Both error observation

and retaking control over them share a common spatial

notion as they are bounded by a certain area of the chip.

As a result, designing a robust system has to answer this
question that how fine or how coarse we need to observe

the errors and react. We classify observers and control-

lers into fine-grained and coarse-grained categories illus-

trated in Table 7.

A. Observability
Observers, monitors, and sensors are designed to

measure a quantitative metric. The desired sensing met-
ric can be collected over a small or large area of the chip

leading to fine-grained and coarse-grained measure-

ments. Fine-grained observability often requires intrusive

measurement within the internal structure of a desired

block that leads to in situ monitoring. On contrary,

coarse-grained observation is often done on the border of

the desired block.

1) Fine-Grained Observability: Internal or in situ moni-

tors such as Razor [75], [90], Razor II [162], Razor lite

[163], and EDS [89] typically use double sampling with

shadow latches through a delayed clock to detect process,

voltage, and temperature variations. Intel resilient core

[44] integrates EDS in the critical paths of each stage to

detect the late transitions. Recently, a 45 nm decoupled

10-lane SIMD processor utilizes Razor for every lane in
the specific context of data-level parallel architectures

[19]. Bubble Razor [81] is based on two-phase transpar-

ent latch that does not require hold buffer insertion for

protecting the short paths since the errors are only

caused by the long paths taking more than a clock

phaseVunlike the flip-flop based design, in the two-

phase transparent latch design, the short paths do not

1#pragma omp approximate [clause]
#pragma omp accurate.

16 Proceedings of the IEEE |

Rahimi et al.: Variability Mitigation in Nanometer CMOS Integrated Systems

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

cause any timing error. Canary circuit [165] uses the

same mechanism of Razor but it delivers a delayed input

signal to the main flip-flop rather than delaying the clock

to checker part (the shadow latch). This does not require

synthesis of a delayed clock tree. Instead of inserting

circuit monitors at the end points, SlackProbe allows

placing monitors at intermediate nets along the circuit
paths [166]. Shifting focus from logic to memory, in situ
current-sensing approach measures the read stability

and write ability of the cells within an SRAM array

without modifying the cell structure [167]. For slower

variations, compact in situ aging sensors with digital

outputs have been proposed to measure NBTI and gate

oxide degradation [57].

2) Coarse-Grained Observability: Replica circuits or ex-

ternal sensors monitors are on the same die, but outside

of the functional paths that enable nonintrusive opera-

tions. These coarse-grained observers are in twofold:

Replica Circuits: Compared to the in situ circuits, the

replica circuits are less intrusive on system operation.

Intel resilient core [44] places a tunable replica circuit

(TRC) [168] per pipeline stage to monitor timing errors.
TRC delay is tuned slower than the critical-path delays,

therefore TRC might incur false positive. Similarly, crit-

ical path monitor (CPM) [148] measures the timing

margin available to a circuit. IBM 8-core POWER7 em-

ploys five CPMs per each core to capture PVT variations

and detect early wearout [169]. The replica circuits can

be constructed from the topology of circuit under moni-

toring providing better tracking [151]. The replica
scheme is also applied for the memory blocks. For in-

stance, 8T SRAM arrays utilize a tunable replica bits

(TRB) [150] therefore enables reduction of the minimum

operating voltage. A replica aging sensor consists of two

components, which are stressed and then separately mea-

sured for the gate oxide and NBTI degradation [152].

On-Chip Sensors: Foxton technology utilizes on-chip

thermal sensors in conjunction with ADC to measure

power and temperature of an Itanium family processor

[153]. High-resolution, digital on-chip voltage droop sen-

sors [155], [156] as well as thermal sensors [154] are

widely used to measure distinct dynamic variations.

These on-die variation sensors have been demonstrated

in response to the slow-changing voltage, temperature,

and aging variations. Less intrusive and low-overhead on-
chip variability monitoring can be done by utilizing

phase-locked loop [157] and ring oscillators [158], [159]

available in the chip. For instance, a statistical data pro-

cessing method can extract the operating voltage and

temperature from several ring oscillators frequency mea-

surements [159]. IDDQ testing is also used to determine

the leaky processors to shift workload from them to effi-

cient, less leaky ones [41].

3) Hybrid Observability: An adaptive MPSoC architec-

ture combines both in situ and replica circuits to offer

better observability [39]. This architecture mixes

Razor II [162] as the in situ circuits with a distributed

macro-block embedding several ring oscillators made of

inverters, long wires, latches, XOR gates, large capacitive

nets, etc. Razor II itself is not sufficient mainly because
of two reasons: 1) it can detect only timing errors; it can-

not anticipate the timing violations if the instrumented

critical paths are not activated; and 2) razor-style is not

able to measure the actual parameters variations, e.g.,

providing quantitative information about the internal

voltage and temperature of the monitored circuit. Ring

oscillators in conjunction with Razor II not only detect

the timing errors, but also track the voltage and tempera-
ture fluctuations [39].

B. Controllability
Likewise, retaking an error correction can be done at

coarse-granularity or fine-granularity. Fine-grained error

correction requires intrusive changes into the structure

of the circuit or architecture to implant the ability of er-

ror handling, masking, or accepting. On the other hand,

Table 7 Granularity of Observability and Controllability

| Proceedings of the IEEE 17

Rahimi et al.: Variability Mitigation in Nanometer CMOS Integrated Systems

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

coarse-grained error correction is less intrusive and often
controls one of the CMOS knobs for adjusting the entire

of desired block under control.

1) Fine-Grained Controllability: These techniques tweak

the circuit at fine-grained that results recovery from er-

rors within one cycle to few cycles. We review their cost

of recovery cycle in ascending order. Once variation is

detected in the current cycle, the timing error is com-
pensated for the activated critical paths by dynamically

stretching the clock period [85], [86]. Another resilient

design is composed of a tunable-length delay, an on-die

dynamic variation monitor, and a clock-gating mecha-

nism [161]. The tunable-length delay avoids the critical

path timing margin degradation during a fast voltage

droop by extending the delay and changing the delay

sensitivity to voltage in the clock distribution. Two local
stalling techniques incur one cycle penalty for error cor-

rection that can be applied for both two-phase latch

based design [81] or flip-flop based design [82]. Counter-

flow pipelining [75], and instruction replay [44] correct

the errant operation by switching to multi cycles opera-

tion. Such techniques do not change the clock period but

the latency of operation [44], [75]. In a coarser granular-

ity, decoupling SIMD queues prevent error events in any
single lane from stalling all other lanes to enable inde-

pendent lane recovery [19]. However, the lanes are re-

quired to resynchronize when a micro-barrier (e.g., load,

store instruction) is reached.

2) Coarse-Grained Controllability: CMOS knobs includ-

ing voltage, frequency, and body bias have been lever-

aged at coarse-granularity of a core to mitigate
variations. Among the available control knobs, adaptive

frequency scaling is widely utilized in resilient imple-

mentations [43], [44], [154]. For instance, an on-die

adaptive frequency controller changes clock frequency in

response to error rate reported by transition detector cir-

cuits [43]. Bringing voltage into the picture, dynamic

voltage and frequency scaling selects appropriate

operating points for each core [39], [41], [42]. As the

last knob, both NMOS and PMOS body bias generators

have been utilized [154]. Adaptive biasing controller is
based on a lookup table, which is indexed by the output

of the sensors and is loaded with precharacterized data

representing body bias values.

The 8-core POWER7 employs two cooperating feed-

back controllers to adaptively reduce the guardband [40]:

the first one is an adaptive clock frequency controller

that reacts quickly to voltage droops by coupling between

the monitors output and a digital phase-locked loop. The
round-trip time of this loop is 8–10 cycles from sensing

through CPMs [148] back to actuating by the phase-

locked loop. The phase-locked loop can adjust frequency

for a wide range of 50%–125% of the nominal clock fre-

quency. The second controller dynamically adjusts the

processor voltage to achieve a desired performance level

on a longer time scale. Another all-digital adaptive volt-

age scaling system features a dual control, too: fast fre-
quency adaptation for protection against voltage droops

and slow supply voltage adaptation for protection against

process and temperature variations [160].

VI. RESILIENT SYSTEMS: PUTTING
IT TOGETHER

In the section, we illustrate how broad architectures can

arrange the presented approaches to enhance their resil-

iency for various physical sources of variations: process,
voltage, temperature, and aging (PVTA). Section VI-A

considers approaches suitable for single-core architec-

tures, while Section VI-B considers parallel architectures.

A. Single-Core Architectures
Table 8 illustrates a list of resilient single-core archi-

tectures. The second column shows the type of architec-

ture. The third columns focuses on the specific approach

of variability tolerance used by the core; and its opera-

tion mode is listed in the next column. Given the ability

of the core, the fifth column covers the type of PVTA

Table 8 Resilient Single-Core Architectures

18 Proceedings of the IEEE |

Rahimi et al.: Variability Mitigation in Nanometer CMOS Integrated Systems

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

variations that can be handled. The next two columns de-

scribe the type of sensors and the actions used by the

core. The eighth column comments on the validation
process.

For instance, a TCP/IP accelerator core [154], shown

in Fig. 9, approaches the variability using the prediction

and prevention mechanism. The core can mitigate PVT

variations and aging during the runtime operation by di-
rect measurements of the variations using the voltage

droop [155] and thermal sensors. This core utilizes fast

single-cycle adaptive frequency (using three PLLs) and

body biasing (NMOS and PMOS bias generators) tech-

niques to deal with sudden changes in the temperature

and supply voltage variations. A 45 nm LEON-3 RISC

core relies on the detection and correction approach to

mitigate the PVT variations during the runtime operation
[44]. For detecting timing errors, the core utilizes both

in situ EDS and replica TRC sensors. For correction, the

core employs instruction replay and frequency scaling

techniques. ARM-base processors [43], [81] unitize simi-

lar runtime techniques to detect and correct the PVT-

induced timing errors. An out-of-order Alpha processor

employs the on-chip voltage sensor to predict and pre-

vent the voltage droops by code optimization [110]. As
opposed to these runtime methods, a resilient FPU [71]

relies only on the delay measurements during the test

time after fabrication to mitigate the process variation.

B. Parallel Architectures
Table 9 summarizes the details for resilient parallel ar-

chitectures. The prediction and prevention as a common

mechanism is used in most of the parallel architectures in-
cluding, 8-core IBM POWER7 [40], 48-core Itanium [42],

16-core out-of-order SPARCv9 [41], and multimedia VLIW

accelerators [25], [112]. To measure variations, IBM

POWER7 uses CPMs [148], while 48-core IA processor

Fig. 9. Resilient TCP/IP core with voltage and thermal sensors,

adaptive clocking and body bias generator [154].

Table 9 Resilient Parallel Architectures

| Proceedings of the IEEE 19

Rahimi et al.: Variability Mitigation in Nanometer CMOS Integrated Systems

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

utilizes a network of 48 thermal sensors. Both multimedia

accelerators focus on core-level monitoring: [112] com-

putes an online policy on ST231 processor to mitigate PVT
variation on VLIW engines, while [25] distributes idleness

among VLIW engines to heal aging.

Detection and correction mechanism is the next popu-

lar approach used in the parallel architectures. Four

STxP70 cores are interconnected together using a GALS

network allowing them to benefit from local adaptive volt-

age and frequency scaling [39]. Every core is equipped

with both ring oscillators [159]) and in situ Razor II [162]
sensors. A 16-core resilient cluster [18] also uses Razor to

bypass the slow memory banks which are shared within

the cluster. Among data-level parallel architectures, a

10-lane SIMD decouples the lanes for independent error

recovery during runtime operation [19], while a GPGPU

disables the slowest core during test time to compensate

the effects of process variations [173]. Finally, ERSA [100]

can ignore the timing errors by executing the tolerable
tasks on 8 relaxed reliability cores (RRCs).

VII. VARIATION-TOLERANT PARALLEL
ARCHITECTURES: A CASE STUDY

In this section, we provide a showcase of the earlier

presented methods for their usage in the data-level and

the task-level parallel architectures. The main focus of

our attention for the data-level parallelism is on the

SIMD and GPGPU architectures, and for the task-level
parallelism is on the shared memory processor clusters.

We show how we can choose, apply, and reuse a proper

resilient approach given that limitations of such archi-

tectures. Fig. 10 illustrates another Y-chart of ap-

proaches suitable for parallel architectures. The main

three axes include predicting and preventing errors (see

Section VII-A), detecting and correcting errors (see

Section VII-B), and accepting errors (Section VII-C). A
new axis combines detecting and correcting errors with

accepting errors to from the hybrid approaches de-

scribed in Section VII-D.

A. Predicting and Preventing Errors
We present two approaches suitable for GPGPUs that

adaptively predict the delay variations and react accord-

ingly to prevent the timing error.

1) Adaptive VLIW Assignment: For GPGPU architecture,

we consider Evergreen family of AMD GPGPUs (a.k.a.

Radeon HD 5000 series) that targets general-purpose

data-intensive applications. The Radeon HD 5870

GPGPU consists of 20 compute units, a global front-end

ultra-thread dispatcher, and a crossbar to connect the

Fig. 10. Taxonomy of variation-tolerant parallel architectures.

20 Proceedings of the IEEE |

Rahimi et al.: Variability Mitigation in Nanometer CMOS Integrated Systems

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

memory hierarchy. Each compute unit has 16 parallel
lanes, or 16 Stream Cores (SCs). Within a compute unit,

a shared instruction fetch unit provides the same ma-

chine instruction for all the lanes to execute in a SIMD

fashion. Each lane or SC contains five Processing

Elements (PEs) forming an ALU engine to execute

Evergreen machine instructions in a vector-like fashion.

Finally, the ALU engine has a pool of pipelined integer

and FP units. The block diagram of the architecture is
shown in Fig. 11.

We propose an online adaptive reallocation strategy to

mitigate the NBTI-induced performance degradation in

GPGPUs. As shown in Fig. 11, every stream core is a five-

way VLIW processor capable of issuing up to five floating

point scalar operations. Each VLIW slot is related to its

corresponding PE. Four PEs (X, Y, Z, W) can perform up

to four single-precision operations separately, while the
remaining one (T) has a special function unit for tran-

scendental operations. In an N-way VLIW processor, up

to N data-independent instructions, available on N slots,

can be assigned to the corresponding PEs and be executed

simultaneously. On average, if M out of N slots are filled

during a kernel execution, we call the achieved packing

ratio is M/N. We observe that the instructions are not

uniformly distributed among the PEs. For instance, the
PEX executes roughly half of the ALU engine instructions

(50.7%) during Reduction kernel execution, while only

about one quarter of the ALU engine instructions

(27.1%) are executed by PEX during Sobel kernel execu-

tion. Seven kernels selected from AMD APP SDK v2.5

[174] execute more than 40% of the ALU engine instruc-

tions only on PEX . This nonuniform workload variation

causes nonuniform aging among the PEs, and exhausts
some PEs more than others and shortening their lifetime.

Unfortunately, this nonuniformity happens within all the

CUs since their workload is highly correlated together;

therefore, no PE throughout the entire compute device is

immune from this unbalanced utilization.

To address this issue, we propose an aging-aware
compiler that uses a dynamic binary optimizer. The

dynamic binary optimizer correlates the PE stress time-

measured by online NBTI sensorsVwith instructions

distribution, and equalizes the expected lifetime of the

PEs. During the dynamic recompilation phase, the bi-

nary is optimized by customizing the kernel’s code with

respect to specific measured health state of GPGPU.

This scheme uniformly distributes the stress of instruc-
tions throughout various VLIW resource slots, resulting

in a healthy code generation that keeps the underlying

GPGPU hardware healthy. The key idea of the aging-

aware compilation is to assign the independent in-

structions uniformly to all slots: idling a fatigued PE

and reassigning its instructions to a young PE through

swapping the corresponding slots during the VLIW bun-

dle code generation. This basically exposes the inherent
idleness in the VLIW slots (average packing ratio of 0.3),

and guides its distribution that does matter for aging.

Thus, the job of the dynamic binary optimizer, for

K-independent instructions, is to find K-young slots, re-

presenting K-young PEs, among all the available N slots,

and then assign instructions to those slots. Therefore,

the generated code is a healthy code that balances the

workload distribution through various slots maximizing
the lifetime of all PEs. The adaptation flow is illustrated

in Fig. 12 and describes how these statistics can be ob-

tained from the device, and how compiler can predict

and thus control the nonuniform aging through four

Fig. 11. Block diagram of the Radeon HD 5870 GPGPU.

Fig. 12. Aging-aware kernel adaptation flow.

| Proceedings of the IEEE 21

Rahimi et al.: Variability Mitigation in Nanometer CMOS Integrated Systems

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

main steps: 1) reading the NBTI sensors; 2) kernel disas-

sembling, static code analysis, and calibrating the work-
load predictions; 3) uniform slot assignment; and 4)

healthy code generation.

We also evaluate the effectiveness of the proposed ap-

proach when executing the healthy kernel on a process

variability-affected GPGPU with initial inter-PE of

�Vth ¼ 10 mV. Fig. 13(a) shows the Vth shift over time

due to the naive kernel execution, and at the end of

360 hours there is an 8 mV Vth variation among the
PEs which limits the lifetime of PEX ðVth�X ¼ 413 mVÞ.
On the other hand, Fig. 13(b) shows that adapting the

kernel periodically leads to a uniform Vth shift among

all the PEs (Vth variation is �0.6 mV), and the maxi-

mum Vth shift is 406 mV at the end of 360 hours. [26]

provides further details.

2) Hierarchically Focused Guardbanding: The notion of
hierarchically focused guardbanding (HFG) is earlier in-

troduced in Section III-A3. The HFG model takes into

account the PVTA parameter variations, the clock fre-

quency, and the physical details of placed-and-routed

functional units (FUs) of GPGPUs through an ASIC

analysis flow. The sensor instrumentation is required as

the delay variation changes across the extreme corners of
PVTA parameters. The question is what mix of monitors

would be useful? Fig. 14 shows the minimum affordable

clock period in the presence or absence of various sen-

sors for three FUs. The sensors are sorted based on the

time constant of the measured PATV parameters: from

DC component to high-frequency components. For in-

stance, the clock period of FPAdd can be reduced from 1.

32 to 1.26 ns (a 0.06 ns guardband reduction) depends
to the actual value of the WID process variation reported

by a process monitor ðPsensorÞ. The clock period can be

further reduced to 1.08 ns if FPAdd is equipped with the

aging as well as the process sensor ðPAsensorsÞ. Adding

the thermal sensor enables even 0.06 ns more reduction

to 1.02 ns ðPATsensorsÞ. Finally, considering the full set of

sensors enables decreasing the clock period from 1.32 ns

to 0.74 ns (a great guardband reduction of 0.58 ns)
based on the measured values of variations reported by

PATVsensors. The more sensors we provide for a FU, the

better conservative guardband reduction for that FU: the

guardband can be reduced up to 8%, 24%, 28%, 44%, if

we equip FPAdd only with Psensor, PAsensors, PATsensors, and

Fig. 13. Process variation and NBTI-induced for 360 hours: (a) the naive kernel; and (b) the periodic execution of healthy kernel.

Fig. 14. Hierarchical sensors (sorted based on the time constant from DC to high-frequency components) for reducing guardband on

the clock period.

22 Proceedings of the IEEE |

Rahimi et al.: Variability Mitigation in Nanometer CMOS Integrated Systems

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

PATVsensors, respectively. As shown, this benefit is consis-

tent across different FUs with a shift in the worst-case

guardband. The FP FUs can exhibit even better guard-
band reduction (e.g., up to 47% for FPexp with

PATVsensors case) due to the higher complexity of the cir-

cuit topology.

Employing any combination of PATV sensors provides

the online measurement of the actual parameters varia-

tions, and thus a control system can adaptively apply an

appropriate guardbanding utilizing the characterized

models for the FUs. Among the available control knobs,
the adaptive clock scaling is widely utilized in the resil-

ient implementations [44], [154], [169]. Therefore, a

control system can tune the clock frequency through an

online model-based rule. To support the fast controller’s

computation, the parametric model (as the outcome of

the ASIC analysis flow) can generate distinct lookup ta-

bles (LUTs) for every FUs. The LUTs are generated dur-

ing the design time for specific configuration of the
sensors, their resolution, and the desire target error rate

for the FUs. Fig. 15 shows the online utilization of the

LUTs with a full configuration of PATVsensors.

The next question to address is what type of monitor-

ing observation granularity and what type of reacting

time we need, e.g., cycle-by-cycle or tens of cycles or

hundred of cycles? To analyze the effect of this choice of

granularity, we apply the HFG to GPU architecture at
two levels. 1) Fine-grained granularity of instruction-

by-instruction monitoring and adaptation that uses sig-

nals of PATV sensors come from the individual FUs that

reside in the execution stage of GPU. The LUTs return

the minimum clock period setting depending on the ac-

tual value of PATV sensors and the chain of FUs that

will be activated by the fetched instruction. Thanks to

the fast adaptive clocking circuit [154], the clock control-
ler reduces the guardband that is compatible with PATV

parameters and the demands of instructions. 2) Coarse-

grained granularity of kernel-level monitoring uses a rep-

resentative PATV sensors for the entire execution stage

of GPU pipeline. The clock adaptation is applied periodi-

cally before the kernel execution. The controller sets the

clock period based on the current value of PATV sensors

of the execution units and the chain of the FUs that po-
tentially will be activated during kernel execution (in the

static sense). Since the adaptation of clock during kernel

execution is prohibited, the controller considers a 5% ex-

tra margin on the reported voltage and temperature

values to recover the intrakernel dynamic variations. The

presented guardbanding scheme is an adaptive resource

management technique to proactively prevent the timing

errors by applying a focused guardbanding. The HFG en-
hances the throughput of the GPU kernels by 70% em-

ploying the coarse-grained PVTA monitors and by

applying the adaptive guardbands at kernel-level. The

finer granularity of instruction-by-instruction monitoring

and adaptation achieves 1.8�–2.1� throughput im-

provements depends to the PVTA monitors configuration

and the type of instructions executed within the kernels.

Reference [27] describes the HFG in detail.

B. Detecting and Correcting Errors
We present mechanisms for a shared memory parallel

architecture to detect and correct errors at various levels

of the system. Generally speaking, the architecture con-

sists of a set of computing units that enables various

options for executing a given workload. One of these op-

tions, as our central focus, is the selection of an appro-
priate computing unit to execute the workload. This

choice between alternative computing units enables par-

simonious execution of the workload in the presence of

timing errors. Having such a choice, enables abstracting

the errors from lower levels to higher levels that can

lead to efficient error handling and better management.

1) Exposing Timing Error to OpenMP: We consider
OpenMP, as the de facto standard for parallel program-

ming on the shared memory multicores systems.

OpenMP is a combination of compiler directives and

library routines that allows programmers to specify paral-

lelism in their code without excessive details of parallel

programming. Our shared memory architecture is a clus-

ter of the processors that work together in MIMD fash-

ion. Our goal is to provide runtime software support to
increase the cost-effective countermeasures against the

timing errors in hardware (see Fig. 16). We pursue this

goal by exposing variability and its effect to the OpenMP

programming model, thus enabling holistic variability

management. We first describe how architectural support

can expose the timing errors, then we describe online

software characterization technique that enables

variation-aware workload scheduling.
Architectural support for exposing errors: We now de-

scribe the architectural details of the variation-tolerant

processing cluster, shown in Fig. 17. The architecture is

inspired by STMicroelectronics Platform 2012 (P2012)

[52], [176] as a programmable many-core accelerator for

next-generation data-intensive embedded applications. In

our implementation, we focus on a single cluster

Fig. 15. Online utilization of characterized models through

the HFG.

| Proceedings of the IEEE 23

Rahimi et al.: Variability Mitigation in Nanometer CMOS Integrated Systems

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

consisting of 16 tightly-coupled 32-bit in-order RISC

cores, a level-one (L1) tightly coupled data memory

(TCDM) and a low-latency 16 � 32 logarithmic intercon-

nection [175]. The TCDM is a software-managed scratch-
pad memory, configured as a shared, multiported,

multibanked L1 memory that is directly connected to the

logarithmic interconnection for fast accesses. The num-

ber of TCDM ports is equal to the number of banks (32)

to enable concurrent access to different memory

locations. Note that a range of addresses mapped on the

TCDM space provides test-and-set read operations,

which we use to implement basic synchronization primi-

tives, e.g., locks.
The logarithmic interconnection is composed of

mesh-of-trees networks to support single cycle communi-

cation between the cores and TCDM banks (see the left

part of Fig. 17). When a read/write request is brought to

the memory interface, the data is available on the

Fig. 16. Timing error abstraction in OpenMP environment.

Fig. 17. Variation-tolerant tightly-coupled processor cluster for OpenMP. The left part shows a 4 � 8 logarithmic interconnection [175].

The right part shows a resilient core that relies on error-detection sequential (EDS) [89] and error control unit (ECU) [44] to correct

timing errors by the replica instructions; �I is the number of error-free executed instructions, and �RI is the number of replayed

instructions.

24 Proceedings of the IEEE |

Rahimi et al.: Variability Mitigation in Nanometer CMOS Integrated Systems

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

negative edge of the same clock cycle, leading to two
clock cycles latency for a conflict-free TCDM access. The

cores have direct access into the off-cluster L2 memory,

also mapped in the global address space.

The cores within the cluster are equipped with two

circuit-level resiliency techniques. First, each core relies

on the EDS [89] circuit sensors to detect any timing er-

ror due to dynamic delay variation. To recover the errant

instruction without changing the clock frequency, the
core employs the multiple-issue instruction replay mech-

anism [44] in its error recovery unit (ECU). The ECU is-

sues seven replica instructions (equal to the number of

pipeline stages) followed by a valid instruction. Second,

the cluster supports the VDD hopping technique [24],

[39], [91], [92] that discretely tunes the voltage of slow

coresVthe cores that are affected by the static process

variation. The VDD hopping improves the clock speed of
the slow cores, thus enables all the components of the

variability-affected cluster to work at same frequency.

This technique avoids the intercore synchronization pen-

alty that would significantly increase L1 TCDM latency.

However, a core with higher vulnerability imposes extra

cycles to correct the errant instructions. This varies the

cost of recovery across the cores within a cluster.

Online Work Unit Vulnerability Characterization:
OpenMP [177] consists of a set of compiler directives and

library routines to specify parallel execution within a se-

quential code. Enclosing a code block within a #pragma
omp parallel directive has the effect of launching
multiple instances of that code over the available proces-
sors. Differentiating the actual work done by different
processors in OpenMP is achieved by means of work-
sharing constructs: #pragma omp for, #pragma
omp sections and #pragma omp task. The for
directive can only be associated to a loop nest, and distrib-
utes the loop iterations over available processors. Within a
sections directive multiple section blocks can be speci-
fied, each containing a different parallel work-unit. Sec-
tions have limited expressiveness for describing task
parallelism. For this reason, the latest OpenMP specifica-
tions have included the new task directive, which sup-
ports sophisticated forms of task parallelism. However,
task implies significant overheads, which makes sec-
tions more convenient to outline few coarse grained
tasks in a program.

As discussed earlier in Sections III-A3, B3, and

IV-B3, the software-driven policies for the variability

management need to characterize parallel work-units,

WU, in terms of vulnerability to timing errors.2 Each
OpenMP work-sharing construct outlines an execution

unit which runs a sequence of instructions. Enclosing

portions of code within any of these constructs allows the

programmer to statically identify several WU types in the

program, as every directive syntactically delimits a unique
stream of instructions. While at runtime the same stream

may be dynamically instantiated several times (e.g., a

work-sharing directive nested within a loop), from the

point of view of our characterization it uniquely identifies

a single WU type. As a direct consequence, there are as

many types of WUs in a program as there are work-

sharing directives in its code; for instance, as shown in

Fig. 18, there are 6 WU types. Using the notion of work-
unit vulnerability (WUV) [115], we capture the timing

errors as high-level software knowledge for execution of

the parallel work-sharing constructs, including task,
sections, and for loop. WUV is a metric to estimate
the execution time of each WU type per each core, under
the hardware variability. This metric is quite useful
for the purpose of simultaneous vulnerability measurement
and load balancing. While the identification of WU types
can be done statically at the compile time, WUV characteri-
zation has to be done online due to two main reasons.
First, for a given fixed operating corner of a core, each
WU type may exercise the core pipeline in a nonidentical
manner. Consequently, each WU type may display differ-
ent vulnerability depending upon composition of the vari-
ous blocks of the core involved during execution of the
WU (intra-corner WUV). Second, the characterization
must reflect the variability-affected characteristic of every
core (not known a priori) on every WU type. Since the

amount of spatial and temporal variations changes from

one core to another WUV is also a per-core metric (inter-

corner WUV). WUV is defined as follows:

WUVði;jÞ ¼
X

Iþ
X

RIj8 corei;8WU typej (1)

2Our platform does not have control over the errors happening
while executing the library code. The functionality is preserved as each
core is equipped with the replay mechanism.

Fig. 18. Outlined WU types in a OpenMP program: task,

sections, for loop.

| Proceedings of the IEEE 25

Rahimi et al.: Variability Mitigation in Nanometer CMOS Integrated Systems

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

where �I is the number of error-free executed instruc-

tions; �RI is the number of replayed instructions3 during

execution of WU type j on core i, as reported by the ECU.
Intuitively, for a given WU type if all the instructions run

without any timing error, the corresponding WUV is equal

to �I as the total error-free dynamic instruction count. In

the event of timing errors, WUV also accounts for the ad-

ditional replica instructions. The lower the WUV, the

lower number of recovery cycles, the lower the dynamic

instruction count, and thus the higher throughput and en-

ergy efficiency.
To quantify WUV, the core collects �I and �RI sta-

tistics for (1) through the available counters in the ECU.

This online characterization mechanism is distributed

among all the cores in the cluster, thus enables full par-

allel WU execution monitoring and characterization.

WUV is represented as a two-dimensional lookup table

for different WU types and cores. This lookup table is

physically distributed across all the banks of the L1
TCDM for fast parallel read/write operations (see the top

part of Fig. 17). The OpenMP runtime accesses to the

WUV metadata through a set of low-level APIs detailed

in [115]. We now examine the WUV for four different

section types when executing on fixed and variable
operating corners. Fig. 19 shows normalized WUV value,
as a metric which divides WUV value to its �I, for a fixed
temperature of 10 �C with a supply voltage range of
0.88 V–1.10 V. The WUV for sections increases at
the lower voltages. For example, the voltage variation of
0.22 V increases the intercorner WUV for section 3
by 60% which means this WU might experience up to

60% higher timing errors depending upon the operating

voltage of the core. Considering fix corners, among the

four sections types, a maximum of 16% intracorner

WUV is observed at (10 �C, 0.88 V) and a minimum of
%1 intracorner WUV at (10 �C, 1.10 V). Hence based on

WUV values, OpenMP runtime schedulers can optimize

the system performance or energy efficiency by matching

variability-affected core characteristics to WU types.

Variation-Aware Work Unit Scheduling: WUV consists
of descriptive metadata to characterize the impact of vari-

ability on different work-unit types running on various

cores. As such, WUV provides a useful abstraction of hard-

ware variability to efficiently allocate a given work-unit to

a suitable core for execution. The variation-aware OpenMP

enables hardware/software collaboration with online vari-

ability monitors in hardware and runtime scheduling in

software. We propose a set of scheduling algorithms in
[115], that implement software-only countermeasure

schemes, one for each work-sharing construct. Hence, the

OpenMP runtime scheduler utilizes WUV metadata during

scheduling to reduce the cost of error recovery caused by

execution of a specific work-sharing constructs. Here, we

focus on a reactive policy for variability-aware task schedul-

ing (VATS) shown in Algorithm VII.1. This scheduler lever-

ages the characterized WUV metadata to allocate tasks to
cores so as to minimize both overall number of instruction

replays and unbalanced loads. The main goal of this sched-

uler is to prevent allocation of tasks to unreliable cores.

Algorithm VII.1 : VATSðtaskjÞ
for i 1 to Ncore

do
loadi loadQueuei þWUVðcorei; taskjÞ
min findMinimumðloadiÞ

�

Queuemin insertðtaskjÞ
return ðminÞ

VATS scheduling policy strives to minimize the num-

ber of replayed instructions utilizing characterized WUV

metadata. VATS also extends its awareness of the load

on each queue associated with a core, thus avoids heavily

unbalanced situations that could increase the total execu-
tion time. Each queue descriptor is enhanced with a sta-

tus register that estimates the overall load ðloadQueueÞ,
in terms of dynamic instructions count, of all tasks pres-

ent into that queue. This is a better metric for workload-

awareness than just the total task count, because different

task types present in the queue may have various compu-

tational weight. To account for imbalance effects due to

nonhomogeneous task durations and other system-level
issues, VATS is further enhanced with a most loaded
queue-first stealing algorithm.

Our experimental results indicate that the entire cost

of online software characterization and countermeasures

is paid off for the variability-affected 16-core cluster. The

proposed OpenMP environment also saves both energy

and total execution time for a wide range of parallelized

applications. VATS reduces the execution time by 3%–
36% and energy by 2%–46% for applications parallelized

with task directives. The variation-aware scheduling for
applications using sections directives also reaches to
energy saving of 15%–50% and faster execution of 26%–

49%. For further details about the error abstraction, you

can refer to [113]–[115] and [178].3Proportional to the number of errant instructions.

Fig. 19. Normalized WUV to voltage variations for 4 different

sections types at 10 �C.

26 Proceedings of the IEEE |

Rahimi et al.: Variability Mitigation in Nanometer CMOS Integrated Systems

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

C. Accepting Errors: Approximate Computing
We present techniques to enhance OpenMP and the

shared-memory architecture presented in Section VII-B1

to support the approximate computing.

1) Accuracy-Configurable OpenMP: We propose a

tightly-coupled processing cluster with shared, variation-

tolerant, and accuracy-reconfigurable floating-point units

(FPUs). This resilient shared-FPUs architecture supports
online timing error detection, correction, and characteri-

zation. We introduce the notion of FP pipeline vulnera-

bility (FPV), captured as metadata, to expose variability

and its effects to a software scheduler for reducing the

cost of error correction.

Our goal is to reduce the cost of a resilient OpenMP

environment which is dominated by the error correction in

the FPUs. Tolerance to error in execution is often a prop-
erty of the application: some applications, or their parts,

are tolerant to errors, while some other parts must be exe-

cuted exactly as specified. We either explicitly ignore the

timing errorsVif possibleVin a fully controlled manner to

avoid undefined behavior of programs, or we try to reduce

the frequency of timing errors by assigning computations

to appropriate pipelines with lower vulnerability.

Using the notions of approximate and accurate com-
putations, we describe a compiler and runtime environ-

ment to use approximate computations in a user- or

algorithmically-controlled fashion. This is achieved via

design-time profiling, synthesis, and optimization in conjunc-

tion with runtime characterization techniques. This approach

eliminates the cost of error correction for specific annotated

approximate regions of code if and only if the propagated

error significance and error rate meet application-specific
constraints on the quality of the output. For error-tolerant

applications our OpenMP extensions specify parts of a pro-

gram that can be executed approximately, thus providing a

new degree of scheduling flexibility and error resilience.

At design-time, code regions are profiled to identify accept-
able error significance and error rate. This information

drives synthesis of an application-driven hardware FPU. At

runtime, as different sequences of OpenMP directives are

dynamically encountered during program execution, the

scheduler promotes FPUs to accurate mode, or demotes

them to approximate mode depending upon the code re-

gion requirements. A ranking scheduler also utilizes the

FPV metadata to identify the most suitable FPUs for the
required computation accuracy for the minimum timing er-

ror rate.

Accuracy-Configurable FPUs: We extend the baseline

cluster architecture with our resilient shared-FPUs. Simi-

lar to the DMA, our FPU design is also controlled via

memory-mapped registers, accessible through a slave port

on the peripheral interconnect. As shown in the right-

most part of Fig. 20, the FPU has three pipeline blocks
which work in parallel. Each pipeline’s inputs and out-

puts are retrieved from a minimal register file (one regis-

ter file per pipeline to allow for parallel execution). For

each pipeline there is a write-only opmode register that

determines whether the current operation is accurate

(i.e., exact) or approximate. Every pipeline block has two

dynamically reconfigurable operating modes: 1) accurate;

and 2) approximate. To ensure 100% timing correctness
in the accurate mode, every pipeline uses the EDS

sensors as well as the ECU to detect and correct any

timing errors. During the accurate operation if a timing

error is detected, the EDS circuits prevent pipeline from

writing results to the register and thus avoid corrupting

the architectural state. To recover the errant operation,

the ECU adopts the multiple-issue operation replay

mechanism [44].
In the approximate mode, the pipeline simply disables

the EDS sensors on the less significant N bits of the frac-

tion. The sign and the exponent bits are always protected

by EDS. This allows the pipeline to ignore any timing error

Fig. 20. Variability-aware cluster architecture with accuracy-configurable FPUs.

| Proceedings of the IEEE 27

Rahimi et al.: Variability Mitigation in Nanometer CMOS Integrated Systems

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

below the less significant N bits of the fraction and save on
the recovery cost. We only disable the error detection cir-

cuits partially on N bits of the fraction. This enables the FP

pipeline for executing the subsequent accurate or approxi-

mate software blocks without any problem in power reten-

tion. Further, this ensures that the error significance

threshold is always met, but limits the use of the recovery

mechanism to those cases where the error is present on

the most significant bits. To characterize vulnerability of
every FP pipeline to the timing error, we use FPV which is

defined as the percentage of cycles in which a timing error

occurs on the pipeline reported by the EDS sensors. To

compute FPV, the ECU dynamically characterizes this per-

pipeline metric over a programmable sampling period. The

characterized FPV of each pipeline is visible to the soft-

ware through the memory-mapped registers. Thus, the

runtime scheduler leverages this characterized information
for better utilization of FP pipelines, for example, it can

assign fewer operations to a pipeline with higher FPV

metadata. The runtime scheduler can also demote an

error-prone pipeline to the approximate mode.

OpenMP Compiler Extension for Approximation: We

provide two custom directives to OpenMP to identify ap-

proximate or accurate computations with an arbitrary

granularity determined by the size of the structured
block enclosed by the two custom directives

#pragma omp accurate
structured-block

#pragma omp approximate [clause]
structured-block.

The approximate directive allows the programmer to
specify the tolerated error for the specific computation
through an additional clause

error_significance_threshold (Gvalue N9).

The error is specified as the least significant N bits of

the fraction. By default, if the programmer does not
specify an error significance threshold, it is assumed

zero-tolerance (i.e., the approximate directive be-
haves as the accurate). By using this clause the
approximate structured blocks have deterministic
fully-predictive semantics: the maximum error signifi-
cance for every FP instruction of the structured block is
bound below the less significant N bits of the fraction.

Moreover, any approximate instruction cannot modify
any register other than its own. Let us consider the

code snippet for Gaussian filter in Fig. 21. Here, the pro-

grammer has indicated the whole parallel block as the ac-

curate computation, with the exception of the FP

multiplication and accumulation of the input data. These

two operations are annotated for the approximate compu-

tation with a tolerance threshold of less significant 20 bits

of the fraction derived from a profiling stage. We use a

profiling technique [118] to identify tolerable error signifi-

cance and error rate thresholds in error-tolerant image

processing applications. The compiler transforms the

blocks to appropriate API calls implemented through the
runtime library.

Runtime Support: The runtime library is a software

layer that lies between the variation-tolerant shared-FPU

architecture and the compiler-transformed OpenMP pro-

gram. The goal of our runtime scheduler is to inspect the

status of the FPUs and allocate them to approximate
or accurate software blocks to reduce the overall cost
of timing error correction. This is accomplished in a two-
fold manner: 1) the runtime scheduler reduces the num-
ber of recovery cycles for accurate blocks by favoring
utilization of FPUs with a lower FPV, thus lower the error
rate and energy; and 2) the scheduler further reduces the
cost of error correction by deliberately propagating the
error toward the program, thus excluding the correction
cost. The latter guarantees the quality of service for
approximate blocks by demoting FPUs to the approxi-
mate mode for ignoring errors that match the tolerance
expressed via the error significance threshold clause.

To allow for quick selection of best suited units for the

accuracy target at hand, our scheduler ranks all the indi-

vidual pipelines based on their FPV. The scheduler tra-

verses the sorted list, starting from the head, until it finds

an available pipeline. Once the target FP pipeline has

been identified, it is configured to the desired operation
mode on-the-fly, and a handler is returned to the program

for offloading the consecutive FP instruction. Using this,

Fig. 21. Code snippet for Gaussian filter utilizing OpenMP

approximation directives.

28 Proceedings of the IEEE |

Rahimi et al.: Variability Mitigation in Nanometer CMOS Integrated Systems

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

for every type of FP operations the ranking algorithm tries

to highly utilize those pipelines with a lower FPV (and

rarely allocate operations to the pipelines at the end of

list), thus the aggregate recovery cycles for execution of

FP operations will be reduced. Fig. 22 illustrates the rank-
ing algorithm. For the approximate operations, in case of

specifying an error rate threshold the scheduler limits its

search to a certain element of the sorted list, e.g., until

the K-th pipeline in Fig. 22. As soon as the scheduler finds

a pipeline which has a higher FPV than the error rate

threshold, it marks it as the virtual end point of the list

for the approximate operations. Therefore, for the follow-

ing approximate requests, the scheduler starts from the
start point of the sorted list, and traverses down toward

the virtual end point of the corresponding sorted list for

finding a free pipeline. However, this virtualization tech-

nique limits the available parallelisms.

The presented collaborative OpenMP environment

enables efficient execution of finely interleaved approxi-

mate and accurate operations enforced by various com-

putational accuracy demands within and across
applications. We demonstrate the effectiveness of our

approach on a 16-core tightly-coupled cluster in the

presence of timing errors. For the general-purpose error-

intolerant applications, our approach reduces the recov-

ery cycles that yield an average energy saving of 22%
(and up to 28%), compared to the worst-case design.

For the error-tolerant image processing applications with

annotated approximate directives, 36% energy saving is
achieved while maintaining acceptable quality degrada-

tion. In case of simultaneous execution of approximate

and accurate applications, our approach avoids the over-

head of frequent switching between the accurate and ap-

proximate modes which is imposed by interference of

the accurate and approximate operations. More details

about this work can be find in [118].

D. Detecting and Correcting With Accepting Errors
In Section VII-B1, we have shown how a shared

memory cluster of processors can schedule parallel

work-units to address errors utilizing the fact that run-

time system has the ability of choosing a favor core in

close spatial proximity. On the contrary, such a choice of

unit is not available in the data-level parallel architec-

tures where the workload is uniform (SIMD) and all the
computing units are fully utilized. Since such architec-

ture has no choice for any alternative execution, it can

utilize memoization or computational reuse that return a

prestored result without triggering the recovery.

GPGPUs execute workload in SIMD fashion with

high utilization. Parallel execution in such SIMD archi-

tectures provides an important ability to reuse computa-

tion (i.e., memoization) and reduce the cost of recovery
from timing errors. We rely on the memoization to safely

store the result of a portion of computing on a reliable

medium, and then reuse the result rather than reexecu-

tion. To do so, we define two notions of memoization at

the instruction level: concurrent instruction reuse (CIR),

and temporal instruction reuse (TIR). Fig. 23 shows that

for a SIMD architecture:

· CIR answers whether an instruction can be re-
used spatially across various parallel lanes;

· TIR answers whether an instruction can be re-

used temporally for a lane itself.

Fig. 22. Runtime scheduling based on FPV ranks.

Fig. 23. Concurrent and temporal instruction reuse (CIR and TIR)

for SIMD.

| Proceedings of the IEEE 29

Rahimi et al.: Variability Mitigation in Nanometer CMOS Integrated Systems

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CIR/TIR recalls the result of an error-free execution on
an instance of data, then reuses this memoized context in

case of meeting a matching constraint. Since different

programs exhibit varying degrees of error tolerance, we

consider two matching constraints that further extend the

application of the memoization to approximate computing

domain:

1) exact matching constraint that enforces full bit-

by-bit matching of the single-precision
instructions;

2) approximate matching that relaxes the criteria

of the exact matching during the comparison by

ignoring mismatches in the less significant N
bits of the fraction parts.

The latter constraint enables an approximate error correc-
tion technique suitable for applications in approximate

computing to receive further benefits form the memoiza-
tion technique. In a nutshell, the spatial and temporal

memoization techniques leverage inherent value locality

and similarity of applications by memoizing the result of

an error-free execution on an instance of data; and by re-

using this memoized result to exactly (or, approximately)

correct any errant execution on other instances of the

same (or, adjacent) data at a very low-cost.

These two techniques are fully compatible with the
standard CMOS process. In [127], [128], we extend us-

age of such spatial and temporal reuse techniques in de-

signing associative memory modules (AMMs) by

leveraging the emerging CMOS-friendly memristor tech-

nology briefly described in Section IV-B2.

1) Spatial Memoization (Concurrent Instruction Reuse):
To exploit the inherent spatial value locality across
SIMD lanes, we propose a SIMD architecture consisting

of a single strong lane and multiple weak lanes (SSMW).

The SSMW is designed to maintain the lockstep integrity

in the face of timing error. The key idea, for satisfying

both resiliency and lockstep execution goals, is to always

guarantee error-free execution of a strong lane (SS).

Then, the rest of weak lanes (MW) can reuse the output

of SS lane in the case of timing errors. In other words,
SSMW provides an architectural support to leverage CIR

for correcting the timing errors of MW lanes.

To measure the exposed spatial value locality over the

parallel lanes, we have defined concurrent instruction re-

use (CIR) as a metric for the entire kernel execution.

CIR is defined as the number of simultaneous instruc-

tions executed on the lane1 ðL1Þ through L15 of the CUs

which satisfy the matching constraint, divided by the to-
tal number of instructions executed in all 16 lanes

ðL0 � L15Þ. The matching constraint determines whether

there is a value locality between the input operands of

the instruction executing on L0 and the input operands

of another instruction executing on any of the neighbor

lanes, i.e., Li, where i 2 ½1; 15�. Thus, a tight (or, relaxed)
matching locality constraint ensures that the instructions

of L0 and any of Li are working on the same (or, adja-
cent) instance of data, and consequently their outputs

are equivalent (or, almost equivalent). This exchangeabil-

ity allows the instructions of L0 to correct any errant out-

put of instructions executing on Li. In the Radeon HD

5870 with 16-wide SIMD pipeline, the maximum theo-

retic CIR is 93.75% (15 out of 16).

Fig. 24 shows the CIR rate and the corresponding

PSNR for various input pictures while using different
matching constraints. As shown in Fig. 24(c), applying

the exact matching constraint yields, on an average, a

CIR rate of 27%. This means that 27% of the executed

instructions on the whole SIMD can reuse the results of

the executed instructions on the L0 (SS lane) for the ac-

curate error correction, without any quality degradation.

Approximate matching relaxes the matching criteria

through masking the less significant 12 bits of the frac-
tion parts during comparison. Consequently, higher mul-

tiple data-parallel values fuse into a single value,

resulting in a higher CIR rate for approximate error cor-

rection, e.g., up to 76% for Sobel. Applying the approxi-

mate matching, on average a CIR rate of 51% (32%) is

achieved on the Sobel (Gaussian) filter with the accept-

able PSNR of 29 dB (39 dB).

2) Single Strong Multiple Weak (SSMW) Architecture:
We exploit the inherent value locality, therefore the

SIMD is architected to maintain the lock-step integrity

in the face of timing error: SSMW architecture, a resil-

ient SIMD architecture. The key idea, for satisfying both

resiliency and the lock-step execution goals, is to always

guarantee error-free execution of a lane (SS). Then the

rest of lanes (MW) can reuse its output in case of timing
errors. In other terms, SSMW provides an architectural

support to leverage CIR for correcting the timing errors

of MW lanes. Note that to achieve this goal, SSMW

superposes resilient circuit techniques on top of the

baseline SIMD architecture without changing the flow

of execution. SSMW employs two circuit resilient tech-

niques. First, it guarantees the error-free execution of

the SS lane in the presence of the worst-case PVT varia-
tions using voltage overdesign (VO). On the other hand,

the MW lanes employ EDS to detect any timing error

and propagate an error bit toward the tail of pipeline

stages.

Second, SSMW also employs a CIR detector module

for every PE of the MW lanes, as shown in Fig. 25. This

module checks the matching constraint, and if it is satis-

fied, the module forwards the output result of the PE in
the SS lane to the output of the corresponding PE in the

weak lane. In case of simultaneous matching and timing

error for any of the MW lanes, the errant weak lane can

reuse the result of SS lane rather than triggering the re-

covery mechanism. The output result of the SS lane is

broadcast via a voltage overdesign network across the

MW lanes. The CIR detector module is a programmable

30 Proceedings of the IEEE |

Rahimi et al.: Variability Mitigation in Nanometer CMOS Integrated Systems

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

combinational logic working on parallel with the first

stage of the PE execution; since every PE executes one

instruction per cycle, the module is thus shared across

all FP functional units of the PE. To check the matching

constraint, the module compares bit by bit the two oper-
ands of its own PE with the two operands of the PE on

the SS lane. All the CIR detector modules share a mask-

ing vector to ignore the differences of the operands in

the less significant N bits of the fraction part. The mask-

ing vector is a memory-mapped 32-bit register that is set

by various application demands on the computation accu-

racy. If the two sets of the operations, with consideration

of commutativity, meet the value locality constraint, the
module sets a reuse-bit which will traverse alongside the

corresponding instruction through the stages of the PE.

At the last stage of the execution, the PE takes three ac-

tions based on the {reuse-bit, error-bit}. In case of no tim-

ing error, i.e. {1/0, 0}, the PE sends out its own

computed result to the write stage. If a timing error oc-

curred for the instruction during any of the stages, but it

has a value locality with the instruction on the SS lane,
i.e., {1, 1}, the PE sends out the computed result of the

SS lane, and avoids the propagation of the error-bit to

the next stage. Finally, in case of the error and lack of

the value locality, i.e., {0, 1}, the PE triggers the recovery

mechanism.

For five applications form AMD APP SDK v2.5 [174],

on an average, the proposed SSMW eliminates the cost

of recovery for 62% of the voltage-droop-affected in-

structions and reduces 12% of the total energy compared

with recent resilient work.

3) Temporal Memoization (Temporal Instruction Reuse):
TIR aims to exploit the value locality and similarity in-

side each processing element, i.e., FPU in our case. We

observe the dispersion of the input operands at the finest

granularity for individual FPUs. To expose the value lo-

cality for each FPU operations, we consider a private

FIFO for every individual FPU. These FIFOs have a small

depth and keep the distinct sets of the input operands in

the order of instruction arrivals. The FIFO matches a set
of incoming input operands and the current content of

entries of FIFO using the matching constraint. The FIFO

maintains a limited number of recent distinct sets.

Therefore, if a set of incoming input operands does not

satisfy either matching constraints, the FIFO will be up-

dated by cleaning its last entry and inserting the new in-

coming operands accordingly.

To exploit the value locality, we tightly couple the
FPU pipeline with our proposed temporal memoization

module. This module has essentially a single-cycle LUT,

and a set of flip-flops and buffers to propagate signals

through the pipeline. The LUT is composed of two parts:

1) a FIFO with four entries; 2) a set of combinational

comparators. In every entry, the FIFO maintains a set of

input operands and the computed result provided by

Fig. 24. CIR of the FP with the corresponding PSNR for two kernels. (a) Sobel filter and (b) Gaussian filter using the approximate

matching constraintV12 bits masked. (c) CIR and PSNR for Sobel and Gaussian filters with the exact and approximate constraints (the

exact matching does not generate any noise because of no bitwise masking).

| Proceedings of the IEEE 31

Rahimi et al.: Variability Mitigation in Nanometer CMOS Integrated Systems

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

the output of the FPU in the last stage ðQSÞ. The parallel

combinational comparators implement the two matching

constraints, and are programmable through a 32-bit
memory-mapped register as a masking vector. They con-

currently make either a full or partial comparison of the

input operands with the stored operands in each entry

based on the masking vector. The LUT works in parallel

with the first stage of the FPU. Therefore, for every

set of input operands, the LUT searches the FIFO to

find a match between the input operands and the oper-

and values stored in the entries (i.e., whether the
matching constraint is satisfied or not). A match directly

results in reuse of results computed earlier. Conse-

quently, this affords the temporal memoization module

an opportunity to correct an errant instruction with zero

cycle penalty.

To enable reuse, the LUT propagates a hit signal

alongside with the previously-computed result ðQLÞ

toward the end of pipeline. The LUT raises the hit signal

that squashes the remaining stages of the FPU to avoid

the redundant computation by clock-gating; the clock-
gating signal is forwarded to the rest of stages, cycle by

cycle. The stored result is also propagated toward the

end of pipeline for the reuse purpose. The hit signal se-

lects the propagated output of the LUT ðQLÞ as the out-

put of the FPU; it also disables the propagation of timing

error signal (if any) to the recovery unit, thus avoids the

costly recovery. Therefore, each hit event reduces energy

by locally retrieving the result from the LUT, rather than
doing full reexecution by the FPU. In case of a LUT

miss, the FIFO is updated to maintain the last recently

computed values. It is implemented through a write en-

able signal ðWenÞ that ensures there is no timing error

during execution of all stages of the FPU for computing

QS. Finally, if simultaneous timing error and miss oc-

curred, the error signal will be propagated to the

Fig. 25. Single strong lane and multiple weak lanes (SSMW) architecture.

32 Proceedings of the IEEE |

Rahimi et al.: Variability Mitigation in Nanometer CMOS Integrated Systems

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

recovery unit that triggers the baseline recovery. Table 10

summarizes these four states. For GPGPU applications,

TER avoids costly recovery that improves the energy effi-

ciency with an average savings of 8% (for 0% timing er-

ror rate) to 28% (for 4% timing error rate). The

memoization techniques are explained in detail in [125],

[126], and [179].

VIII . CONCLUSION AND OUTLOOK

Microelectronic variability is a phenomenon at the in-

tersection of microelectronic scaling, semiconductor

manufacturing and how electronic systems are designed

and deployed. Using timing variability we showed vari-

ous levels of microelectronic circuit and system design

where the effects of variability can be mitigated. These
methods have a direct impact on the cost, performance

and quality of the microelectronic systems. Methods to

combat variability in practice have largely been confined

to ever expanding design guardbands for the circuit de-

signer. However, more effective methods can be devised

that address variability across design abstraction levels.

Such coordinated cross-layer methods are central to the

emerging outlook on variability-tolerance as discussed
below.

· Application/Algorithm. Emerging applications

including graphics, multimedia, web search, data

analytics, and cyber-physical system go beyond

primarily numerical computations for scientific

use to interacting with sensor and human inter-

faces. There exists a great potential to match the

“impedance” on the accuracy of the computed re-
sult to application needs. In particular, the “ac-

ceptance criteria” for results of a computation is

subject to quality tradeoffs, much the same way

as quality of a signal received over a communica-

tions channel. The resulting accuracy require-

ments may not always need the hardware

supported accuracy levels which are designed for

worst case computational needs. This presents an
opportunity to improve time and energy cost of

computation by devising domain-specific resil-

iency techniques.

Unfortunately, achieving this level of tradeoff is

a much harder problem than knowing quality

needs of a specific or specific class of applica-

tions. There needs to be engineered guarantees

at all levels, certainly from hardware as well,
that system and application developers can rely

upon. Thus, the biggest technical challenge in

this area is systematic methods of capturing/

inferring acceptance precision and using this in-

formation to develop domain-specific resilience

techniques. A careful study of acceptability dif-

ferences between general purpose CPU and

GPGPU architectures is needed to develop
architecture-specific solutions. Recent work in

this area can be classified into three broad groups

as to how the accuracy versus cost tradeoff is

made: 1) sampling data points rather than per-

forming all specified computations, such as in

BlinkDB; 2) changing task schedules based on

computation quality needs; and 3) application-

specific relaxation of precision.
· Software. Software presents a great unexploited

potential for diagnosis and mitigation of varia-

tion effects. Software requires runtime monitor-

ing and re-calibration mechanisms to determine

the limits of efficiency. The key point is that at

design time there is not enough knowledge and

there is too much variability and sensitivity to

have a viable design time approach. Distributed
software techniques and paradigms will therefore

become increasingly pervasive even at the chip

level. The trend should be toward avoiding global

variability bottlenecks, through arranging a mix

of redundant execution (avoiding single-point of

failure), globally-asynchronous communication

and orchestration, and fine-grained rollback.

Recent work in conceptualization of systems are
physically asynchronous and logically synchro-

nous (PALS) presents an interesting possibility of

how distributed computation can be composed

with some guarantees as to the quality and timing

of results.

· Architecture. As mentioned earlier, variability

mitigation is about cost and scale. Modular and

scalable architectures such as those found in the
programmable accelerators enable better observ-

ability and controllability of variations through

explicit parallelism. Both hardware and software

can enhance variability-tolerance by tuning two

available axes: configurations and choices. Hard-

ware and software can jointly “configure” avail-

able settings of an architecture and appropriate

parameters explicitly coded in applications. They
can also selectively “choose” a suitable hardware

resource, or an alternative code path. For in-

stance, one alternative can select an optimized

approximate kernel rather than exact one results

in significant resource reduction enabling inte-

gration larger number of parallel kernels on the

fixed budget the underlying architecture.

Table 10 Timing Error Handling With Temporal Instruction Reuse

| Proceedings of the IEEE 33

Rahimi et al.: Variability Mitigation in Nanometer CMOS Integrated Systems

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

· Circuit. Recent efforts have been done in designing
robust clocked circuits. By coupling them with the

large spectrum of asynchronous options, we can

achieve parsimonious robustness. For a given subcir-

cuit (either exact or approximate), a synthesis tool

would have the choice of selecting a communication
scheme among available different communication

templates for realizing that subcircuit. In other

words, the problem of determining the level of

accuracy of a subcircuit will be transformed to “how
much” energy we want to spend on ensuring the

subcircuit functional “integrity” instead of spending

the energy on the actual subcircuit computation.

Overall, variability mitigation presents a broad

range of possibilities and techniques that can

enable continued benefits from microelectronic

scaling and manufacturing methods to the system

designers. h

REFERENCES

[1] K. Bowman, S. Duvall, and J. Meindl,
“Impact of die-to-die and within-die
parameter fluctuations on the maximum
clock frequency distribution,” in Proc. IEEE
Int. Solid-State Circuits Conf. Digest Tech.
Papers (ISSCC 2001), pp. 278–279.

[2] S. Borkar, T. Karnik, S. Narendra,
J. Tschanz, A. Keshavarzi, and V. De,
“Parameter variations and impact on circuits
and microarchitecture,” in Proc. Design
Autom. Conf., Jun. 2003, pp. 338–342.

[3] The ITRS Website. [Online]. Available:
http://www.itrs.net/ITRS%201999-2014%
20Mtgs,%20Presentations%20&%20Links/
2012ITRS/Home2012.htm.

[4] K. Jeong, A. Kahng, and K. Samadi,
“Impact of guardband reduction on design
outcomes: A quantitative approach,” IEEE
Trans. Semiconductor Manufact., vol. 22,
no. 4, pp. 552–565, Nov. 2009.

[5] X. Li, J. Qin, and J. Bernstein, “Compact
modeling of mosfet wearout mechanisms
for circuit-reliability simulation,” IEEE
Trans. Device Mater. Rel., vol. 8, no. 1,
pp. 98–121, Mar. 2008.

[6] K. Bowman, C. Tokunaga, J. Tschanz,
A. Raychowdhury, M. Khellah, B. Geuskens,
S.-L. Lu, P. Aseron, T. Karnik, and V. De,
“Dynamic variation monitor for measuring
the impact of voltage droops on
microprocessor clock frequency,” in Proc.
IEEE Custom Integr. Circuits Conf. (CICC),
Sep. 2010, pp. 1–4.

[7] S. Murali, A. Mutapcic, D. Atienza,
R. Gupta, S. Boyd, L. Benini, and
G. De Micheli, “Temperature control of
high-performance multi-core platforms
using convex optimization,” in Proc. Conf.
Des., Autom. Test Eur., 2008, pp. 110–115.
[Online]. Available: http://doi.acm.org/
10.1145/1403375.1403405, ser. DATE ’08.
New York, NY, USA: ACM.

[8] D. Kamel, C. Hocquet, O.-X. Standaert,
D. Flandre, and D. Bol, “Glitch-induced
within-die variations of dynamic energy in
voltage-scaled nano-cmos circuits,” in Proc.
ESSCIRC, Sep. 2010, pp. 518–521.

[9] T. Austin, V. Bertacco, D. Blaauw, and
T. Mudge, “Opportunities and challenges
for better than worst-case design,” in Proc.
2005 Asia South Pacific Design Autom. Conf.,
2005, pp. 2–7. [Online]. Available:
http://doi.acm.org/10.1145/1120725.1120878.

[10] L. Wanner, R. Balani, S. Zahedi, C. Apte,
P. Gupta, and M. Srivastava,
“Variability-aware duty cycle scheduling in
long running embedded sensing systems,”
in Proc. Design, Autom., Test Eur. Con.
Exhib., Mar. 2011, pp. 1–6.

[11] S. Ghosh and K. Roy, “Parameter variation
tolerance and error resiliency: New design
paradigm for the nanoscale era,” Proc.
IEEE, vol. 98, no. 10, pp. 1718–1751,
Oct. 2010.

[12] J. Crop, E. Krimer, N. Moezzi-Madani,
R. Pawlowski, T. Ruggeri, P. Chiang, and
M. Erez, “Error detection and recovery
techniques for variation-aware cmos
computing: A comprehensive review,”
J. Low Power Electron. Appl., vol. 1, no. 3,
pp. 334–356, 2011. [Online]. Available:
http://www.mdpi.com/2079-9268/1/3/334.

[13] S. Dighe, S. Vangal, P. Aseron, S. Kumar,
T. Jacob, K. Bowman, J. Howard, J. Tschanz,
V. Erraguntla, N. Borkar, V. De, and
S. Borkar, “Within-die variation-aware
dynamic-voltage-frequency-scaling with
optimal core allocation and thread hopping
for the 80-core teraflops processor,” IEEE
J. Solid-State Circuits, vol. 46, no. 1,
pp. 184–193, Jan. 2011.

[14] D. Jeon, M. Seok, Z. Zhang, D. Blaauw,
and D. Sylvester, “Design methodology for
voltage-overscaled ultra-low-power systems,”
IEEE Trans. Circuits Syst. II: Exp. Briefs,
vol. 59, no. 12, pp. 952–956, Dec. 2012.

[15] B. Zhai, R. Dreslinski, D. Blaauw, T. Mudge,
and D. Sylvester, “Energy efficient
near-threshold chip multi-processing,” in
Proc. ACM/IEEE Int. Symp. Low Power
Electron. Design (ISLPED), Aug. 2007,
pp. 32–37.

[16] R. G. Dreslinski, M. Wieckowski, D. Blaauw,
D. Sylvester, and T. N. Mudge,
“Near-threshold computing: Reclaiming
moore’s law through energy efficient
integrated circuits,” Proc. IEEE, vol. 98,
no. 2, pp. 253–266, Feb. 2010.

[17] R. Rithe, S. Chou, J. Gu, A. Wang, S. Datla,
G. Gammie, D. Buss, and A. Chandrakasan,
“The effect of random dopant fluctuations
on logic timing at low voltage,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 20,
no. 5, pp. 911–924, May 2012.

[18] M. Kakoee, I. Loi, and L. Benini,
“Variation-tolerant architecture for ultra
low power shared-l1 processor clusters,”
IEEE Trans. Circuits Syst. II: Exp. Briefs,
vol. 59, no. 12, pp. 927–931, Dec. 2012.

[19] R. Pawlowski, E. Krimer, J. Crop,
J. Postman, N. Moezzi-Madani, M. Erez,
and P. Chiang, “A 530 mv 10-lane simd
processor with variation resiliency in
45 nm soi,” in Proc. IEEE Int. Solid-State
Circuits Conf. Digest Tech. Papers (ISSCC),
Feb. 2012, pp. 492–494.

[20] A. Rahimi, L. Benini, and R. K. Gupta,
“Analysis of instruction-level vulnerability
to dynamic voltage and temperature
variations,” in Proc. Design, Autom., Test
Eur. Conf. Exhib., Mar. 2012, pp. 1102–1105.

[21] V. Kleeberger, S. Kiesel, U. Schlichtmann,
and S. Chakraborty, “Program-aware circuit
level timing analysis,” in Proc. 13th Int.
Symp. Integr. Circuits (ISIC), Dec. 2011,
pp. 102–105.

[22] V. B. Kleeberger, P. R. Maier, and
U. Schlichtmann, “Workload- and
instruction-aware timing analysis: The
missing link between technology and

system-level resilience,” in Proc. 51st
Annu. Design Autom. Conf. Design Autom.
Conf., 2014, pp. 49:1–49:6. [Online].
Available: http://doi.acm.org/10.1145/
2593069.2596694.

[23] A. Rahimi, L. Benini, and R. K. Gupta,
“Application-adaptive guardbanding to
mitigate static and dynamic variability,”
IEEE Trans. Comput., vol. 63, no. 9,
pp. 2160–2173, Sep. 2013.

[24] A. Rahimi, L. Benini, and R. K. Gupta,
“Procedure hopping: A low overhead
solution to mitigate variability in shared-l1
processor clusters,” in Proc. 2012 ACM/
IEEE Int. Symp. Low Power Electron.
Design, 2012, pp. 415–420. [Online].
Available: http://doi.acm.org/10.1145/
2333660.2333754.

[25] F. Paterna, L. Benini, A. Acquaviva,
F. Papariello, G. Desoli, and M. Olivieri,
“Adaptive idleness distribution for
non-uniform aging tolerance in
multiprocessor systems-on-chip,” in Proc.
Design, Autom., Test Eur. Conf. Exhib.,
Apr. 2009, pp. 906–909.

[26] A. Rahimi, L. Benini, and R. K. Gupta,
“Aging-aware compiler-directed vliw
assignment for gpgpu architectures,” in
Proc. 50th Annu. Design Autom. Conf., 2013,
pp. 16:1–16:6. [Online]. Available: http://
doi.acm.org/10.1145/2463209.2488754.

[27] A. Rahimi, L. Benini, and R. K. Gupta,
“Hierarchically focused guardbanding: An
adaptive approach to mitigate pvt variations
and aging,” in Proc. Design, Autom., Test Eur.
Conf. Exhib., Mar. 2013, pp. 1695–1700.

[28] S. Roy and K. Chakraborty, “Predicting
timing violations through instruction-level
path sensitization analysis,” in Proc. 49th
Annu. Design Autom. Conf., 2012,
pp. 1074–1081. [Online]. Available: http://
doi.acm.org/10.1145/2228360.2228555.

[29] K. Chakraborty, B. Cozzens, S. Roy, and
D. M. Ancajas, “Efficiently tolerating timing
violations in pipelined microprocessors,” in
Proc. 50th Annu. Design Autom. Conf., 2013,
pp. 102:1–102:8. [Online]. Available: http://
doi.acm.org/10.1145/2463209.2488860.

[30] V. Reddi, M. Gupta, G. Holloway, G.-Y. Wei,
M. Smith, and D. Brooks, “Voltage
emergency prediction: Using signatures
to reduce operating margins,” in Proc.
IEEE 15th Int. Symp. High Performance
Comput. Arch., Feb. 2009, pp. 18–29.

[31] X. Liang, and D. Brooks, “Microarchitecture
parameter selection to optimize system
performance under process variation,” in
Proc. 2006 IEEE/ACM Int. Conf.
Comput.-Aided Des., 2006, pp. 429–436.
[Online]. Available: http://doi.acm.org/
10.1145/1233501.1233587.

[32] X. Liang and D. Brooks, “Mitigating the
impact of process variations on processor
register files and execution units,” in Proc.
39th Annu. IEEE/ACM Int. Symp. Microarch.
(MICRO-39), Dec. 2006, pp. 504–514.

34 Proceedings of the IEEE |

Rahimi et al.: Variability Mitigation in Nanometer CMOS Integrated Systems

http://www.itrs.net/ITRS%201999-2014%20Mtgs,%20Presentations%20&%20Links/2012ITRS/Home2012.htm
http://www.itrs.net/ITRS%201999-2014%20Mtgs,%20Presentations%20&%20Links/2012ITRS/Home2012.htm
http://www.itrs.net/ITRS%201999-2014%20Mtgs,%20Presentations%20&%20Links/2012ITRS/Home2012.htm
http://doi.acm.org/10.1145/1403375.1403405
http://doi.acm.org/10.1145/1403375.1403405
http://doi.acm.org/10.1145/1120725.1120878
http://www.mdpi.com/2079-9268/1/3/334
http://doi.acm.org/10.1145/2593069.2596694
http://doi.acm.org/10.1145/2593069.2596694
http://doi.acm.org/10.1145/2333660.2333754
http://doi.acm.org/10.1145/2333660.2333754
http://doi.acm.org/10.1145/2463209.2488754
http://doi.acm.org/10.1145/2463209.2488754
http://doi.acm.org/10.1145/2228360.2228555
http://doi.acm.org/10.1145/2228360.2228555
http://doi.acm.org/10.1145/2463209.2488860
http://doi.acm.org/10.1145/2463209.2488860
http://doi.acm.org/10.1145/1233501.1233587
http://doi.acm.org/10.1145/1233501.1233587

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

[33] S. Ghosh, S. Bhunia, and K. Roy, “Crista:
A new paradigm for low-power,
variation-tolerant, and adaptive circuit
synthesis using critical path isolation,”
IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 26, no. 11,
pp. 1947–1956, Nov. 2007.

[34] P. Ndai, N. Rafique, M. Thottethodi,
S. Ghosh, S. Bhunia, and K. Roy, “Trifecta:
A nonspeculative scheme to exploit
common, data-dependent subcritical paths,”
IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 18, no. 1, pp. 53–65, Jan. 2010.

[35] F. Botman, D. Bol, J.-D. Legat, and K. Roy,
“Data-dependent operation speed-up
through automatically inserted signal
transition detectors for ultralow voltage
logic circuits,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 22, no. 12,
pp. 2561–2570, Dec. 2014.

[36] S. Sarangi, B. Greskamp, A. Tiwari, and
J. Torrellas, “Eval: Utilizing processors with
variation-induced timing errors,” in Proc.
41st IEEE/ACM Int. Symp. Microarch.
(MICRO-41), Nov. 2008, pp. 423–434.

[37] J. Tschanz, J. Kao, S. Narendra, R. Nair,
D. Antoniadis, A. Chandrakasan, and
V. De, “Adaptive body bias for reducing
impacts of die-to-die and within-die
parameter variations on microprocessor
frequency and leakage,” in Proc. IEEE Int.
Solid-State Circuits Conf. Digest Tech. Papers
(ISSCC 2002), Feb. 2002, vol. 1, pp. 422–478.

[38] S. Borkar, T. Karnik, and V. De, “Design
and reliability challenges in nanometer
technologies,” in Proc. 41st Design Autom.
Conf., Jul. 2004, pp. 75–75.

[39] I. Miro-Panades, E. Beigne, Y. Thonnart,
L. Alacoque, P. Vivet, S. Lesecq,
D. Puschini, A. Molnos, F. Thabet, B. Tain,
K. Ben Chehida, S. Engels, R. Wilson, and
D. Fuin, “A fine-grain variation-aware
dynamic vdd-hopping avfs architecture on a
32 nm gals mpsoc,” IEEE J. Solid-State
Circuits, vol. 49, no. 7, pp. 1475–1486,
Jul. 2014.

[40] C. Lefurgy, A. Drake, M. Floyd,
M. Allen-Ware, B. Brock, J. Tierno,
J. Carter, and R. Berry, “Active guardband
management in power7+ to save energy
and maintain reliability,” IEEE Micro,
vol. 33, no. 4, pp. 35–45, Jul. 2013.

[41] S. Herbert, S. Garg, and D. Marculescu,
“Exploiting process variability in voltage/
frequency control,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 20, no. 8,
pp. 1392–1404, Aug. 2012.

[42] S. Dighe, S. Gupta, V. De, S. Vangal,
N. Borkar, S. Borkar, and K. Roy, “A 45 nm
48-core ia processor with variation-aware
scheduling and optimal core mapping,” in
Proc. 2011 Symp. VLSI Circuits (VLSIC),
Jun. 2011, pp. 250–251.

[43] D. Bull, S. Das, K. Shivshankar, G. Dasika,
K. Flautner, and D. Blaauw, “A
power-efficient 32 b arm isa processor
using timing-error detection and correction
for transient-error tolerance and adaptation
to pvt variation,” in Proc. 2010 IEEE Int.
Solid-State Circuits Conf. Digest Tech.
Papers (ISSCC), Feb. 2010, pp. 284–285.

[44] K. Bowman, J. Tschanz, S. Lu, P. Aseron,
M. Khellah, A. Raychowdhury,
B. Geuskens, C. Tokunaga, C. Wilkerson,
T. Karnik, and V. De, “A 45 nm resilient
microprocessor core for dynamic variation
tolerance,” IEEE J. Solid-State Circuits,
vol. 46, no. 1, pp. 194–208, Jan. 2011.

[45] X. Bai, C. Visweswariah, P. Strenski, and
D. Hathaway, “Uncertainty-aware circuit

optimization,” in Proc. 39th Design Autom.
Conf., 2002, pp. 58–63.

[46] A. Kahng, S. Kang, R. Kumar, and J. Sartori,
“Slack redistribution for graceful degradation
under voltage overscaling,” in Proc. 2010
15th Asia South Pacific Design Autom. Conf.
(ASP-DAC), Jan. 2010, pp. 825–831.

[47] D. Bol, C. Hocquet, and F. Regazzoni,
“A fast ulv logic synthesis flow in many-vt
cmos processes for minimum energy under
timing constraints,” IEEE Trans. Circuits
Syst. II: Exp. Briefs, vol. 59, no. 12,
pp. 947–951, Dec. 2012.

[48] L. de Lima Silva, A. Calimera, A. Macii,
E. Macii, and M. Poncino, “Power efficient
variability compensation through clustered
tunable power-gating,” IEEE J. Emerg.
Sel. Topics Circuits Syst., vol. 1, no. 3,
pp. 242–253, Sep. 2011.

[49] K.-L. Chang, J. Chang, B.-H. Gwee, and
K.-S. Chong, “Synchronous-logic and
asynchronous-logic 8051 microcontroller
cores for realizing the internet of things:
A comparative study on dynamic voltage
scaling and variation effects,” IEEE J.
Emerg. Sel. Topics Circuits Syst., vol. 3,
no. 1, pp. 23–34, Mar. 2013.

[50] A. Mokhov, D. Sokolov, and A. Yakovlev,
“Adapting asynchronous circuits to operating
conditions by logic parametrisation,” in Proc.
IEEE 18th Int. Symp. Asynchronous Circuits
and Syst. (ASYNC), May 2012, pp. 17–24.

[51] D. Marculescu and E. Talpes, “Variability and
energy awareness: a microarchitecture-level
perspective,” in Proc. 42nd Design Autom.
Conf., Jun. 2005, pp. 11–16.

[52] D. Melpignano, L. Benini, E. Flamand,
B. Jego, T. Lepley, G. Haugou, F. Clermidy,
and D. Dutoit, “Platform 2012, a many-core
computing accelerator for embedded socs:
Performance evaluation of visual analytics
applications,” in Proc. 49th ACM/EDAC/IEEE
Design Autom. Conf. (DAC), Jun. 2012,
pp. 1137–1142.

[53] S. Ramasubramanian, S. Venkataramani,
A. Parandhaman, and A. Raghunathan,
“Relax-and-retime: A methodology for
energy-efficient recovery based design,” in
Proc. 50th ACM/EDAC/IEEE Design Autom.
Conf. (DAC), May 2013, pp. 1–6.

[54] Eembc Benchmark Consortium. [Online].
Available: http://www.eembc.org.

[55] L. Lai and P. Gupta, “A Case Study of Logic
Delay Fault Behaviors on General-Purpose
Embedded Processor Under Voltage
Overscaling,” Dept. Electr. Eng., Univ.
California Los Angeles, Los Angeles, CA,
USA, Tech. Rep. 90095, Aug. 2014.

[56] G. Hoang, R. B. Findler, and R. Joseph,
“Exploring circuit timing-aware language
and compilation,” in Proc. 16th Int. Conf.
Architectural Support Program. Lang.
Operating Syst., 2011, pp. 345–356.
[Online]. Available: http://doi.acm.org/
10.1145/1950365.1950405.

[57] P. Singh, E. Karl, D. Blaauw, and
D. Sylvester, “Compact degradation sensors
for monitoring nbti and oxide
degradation,” IEEE Trans. Very Large
Scale Integr. (VLSI) Sys., vol. 20, no. 9,
pp. 1645–1655, Sep. 2012.

[58] K.-H. Huang and J. Abraham,
“Algorithm-based fault tolerance for matrix
operations,” IEEE Trans. Comput., vol. C-33,
no. 6, pp. 518–528, Jun. 1984.

[59] A. Al-Yamani, N. Oh, and E. McCluskey,
“Performance evaluation of checksum-based
abft,” in Proc. IEEE Int. Symp. Defect Fault
Tolerance VLSI Syst., 2001, pp. 461–466.

[60] M. Makhzan, A. Khajeh, A. Eltawil, and
F. Kurdahi, “A low power jpeg2000
encoder with iterative and fault tolerant
error concealment,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 17, no. 6,
pp. 827–837, Jun. 2009.

[61] M. Hiller, “Executable assertions for
detecting data errors in embedded control
systems,” in Proc. Int. Conf. Dependable
Syst. Netw., 2000, pp. 24–33.

[62] A. Mahmood and E. McCluskey,
“Concurrent error detection using watchdog
processors-a survey,” IEEE Trans. Comput.,
vol. 37, no. 2, pp. 160–174, Feb. 1988.

[63] J. Sloan, R. Kumar, and G. Bronevetsky,
“An algorithmic approach to error
localization and partial recomputation for
low-overhead fault tolerance,” in Proc. 43rd
Annu. IEEE/IFIP Int. Conf. Dependable
Syst. Netw. (DSN), Jun. 2013, pp. 1–12.

[64] R. Gabrys, E. Yaakobi, L. Grupp,
S. Swanson, and L. Dolecek, “Tackling
intracell variability in tlc flash through
tensor product codes,” in Proc. IEEE
Int. Symp. Inf. Theory Proc. (ISIT), Jul. 2012,
pp. 1000–1004.

[65] O. Tahan and M. Shawky, “Using dynamic
task level redundancy for openmp fault
tolerance,” in Proc. 25th Int. Conf. Arch.
Comput. Syst., 2012, pp. 25–36. [Online].
Available: http://dx.doi.org/10.1007/
978-3-642-28293-5-3.

[66] C. Bolchini, A. Miele, and D. Sciuto, “An
adaptive approach for online fault
management in many-core architectures,”
in Proc. Design, Autom., Test Eur. Conf.
Exhib., Mar. 2012, pp. 1429–1432.

[67] B. Döbel, H. Härtig, and M. Engel,
“Operating system support for redundant
multithreading,” in Proc. 10th ACM Int.
Conf. Embed. Software, 2012, pp. 83–92.
[Online]. Available: http://doi.acm.org/
10.1145/2380356.2380375.

[68] Y. Wang, A. Nicolau, R. Cammarota, and
A. Veidenbaum, “A fault tolerant
self-scheduling scheme for parallel loops
on shared memory systems,” in Proc. 19th
Int. Conf. High Performance Comput. (HiPC),
Dec. 2012, pp. 1–10.

[69] L. A. D. Bathen, N. D. Dutt, A. Nicolau,
and P. Gupta, “Vamv: Variability-aware
memory virtualization,” in Proc. Conf.
Design, Autom. Test Eur., 2012, pp. 284–287.
[Online]. Available: http://dl.acm.org/
citation.cfm?id=2492708.2492779.

[70] L. A. D. Bathen, M. Gottscho, N. Dutt,
A. Nicolau, and P. Gupta, “Vipzone:
Os-level memory variability-driven physical
address zoning for energy savings,” in Proc.
8th IEEE/ACM/IFIP Int. Conf. Hardware/
Software Codesign Syst. Synthesis, 2012,
pp. 33–42. [Online]. Available: http://doi.
acm.org/10.1145/2380445.2380457.

[71] X. Liang, D. Brooks, and G.-Y. Wei,
“A process-variation-tolerant floating-point
unit with voltage interpolation and variable
latency,” in Proc. IEEE Int. Solid-State
Circuits Conf. (ISSCC 2008) Digest Tech.
Papers, Feb. 2008, pp. 404–623.

[72] A. Tiwari, S. R. Sarangi, and J. Torrellas,
“Recycle: Pipeline adaptation to tolerate
process variation,” in Proc. 34th Annu. Int.
Symp. Comput. Arch., 2007, pp. 323–334.
[Online]. Available: http://doi.acm.org/
10.1145/1250662.1250703.

[73] M. Gottscho, A. BanaiyanMofrad, N. Dutt,
A. Nicolau, and P. Gupta, “Power/capacity
scaling: Energy savings with simple
fault-tolerant caches,” in Proc. 51st Annu.
Design Autom. Conf., 2014, pp. 100:1–100:6.

| Proceedings of the IEEE 35

Rahimi et al.: Variability Mitigation in Nanometer CMOS Integrated Systems

http://www.eembc.org
http://doi.acm.org/10.1145/1950365.1950405
http://doi.acm.org/10.1145/1950365.1950405
http://dx.doi.org/10.1007/978-3-642-28293-5-3
http://dx.doi.org/10.1007/978-3-642-28293-5-3
http://doi.acm.org/10.1145/2380356.2380375
http://doi.acm.org/10.1145/2380356.2380375
http://dl.acm.org/citation.cfm?id=2492708.2492779
http://dl.acm.org/citation.cfm?id=2492708.2492779
http://doi.acm.org/10.1145/2380445.2380457
http://doi.acm.org/10.1145/2380445.2380457
http://doi.acm.org/10.1145/1250662.1250703
http://doi.acm.org/10.1145/1250662.1250703

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

[Online]. Available: http://doi.acm.org/
10.1145/2593069.2593184.

[74] A. Agarwal, B. Paul, H. Mahmoodi,
A. Datta, and K. Roy, “A process-tolerant
cache architecture for improved yield in
nanoscale technologies,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 13,
no. 1, pp. 27–38, Jan. 2005.

[75] D. Ernst, N. S. Kim, S. Das, S. Pant,
R. Rao, T. Pham, C. Ziesler, D. Blaauw,
T. Austin, K. Flautner, and T. Mudge,
“Razor: A low-power pipeline based on
circuit-level timing speculation,” in Proc.
36th Annu. IEEE/ACM Int. Symp. Microarch.
(MICRO-36), Dec. 2003, pp. 7–18.

[76] Y. Tamir and M. Tremblay, “High-performance
fault-tolerant vlsi systems using micro
rollback,” IEEE Trans. Comput., vol. 39,
no. 4, pp. 548–554, Apr. 1990.

[77] M. Prvulovic, Z. Zhang, and J. Torrellas,
“Revive: Cost-effective architectural
support for rollback recovery in
shared-memory multiprocessors,” in Proc.
29th Annu. Int. Symp. Comput. Arch., 2002,
pp. 111–122.

[78] E. Krimer, P. Chiang, and M. Erez, “Lane
decoupling for improving the timing-error
resiliency of wide-simd architectures,” in
Proc. 39th Annu. Int. Symp. Comput. Arch.,
2012, pp. 237–248. [Online]. Available:
http://dl.acm.org/citation.cfm?
id=2337159.2337187.

[79] A. Rajendiran, S. Ananthanarayanan,
H. Patel, M. Tripunitara, and S. Garg,
“Reliable computing with ultra-reduced
instruction set co-processors,” in Proc. 49th
ACM/EDAC/IEEE Design Autom. Conf.
(DAC), Jun. 2012, pp. 697–702.

[80] M. Kurimoto, H. Suzuki, R. Akiyama,
T. Yamanaka, H. Ohkuma, H. Takata, and
H. Shinohara, “Phase-adjustable error
detection flip-flops with 2-stage hold driven
optimization and slack based grouping
scheme for dynamic voltage scaling,” in
Proc. 45th ACM/IEEE Design Autom. Conf.
(DAC 2008), Jun. 2008, pp. 884–889.

[81] M. Fojtik, D. Fick, Y. Kim, N. Pinckney,
D. Harris, D. Blaauw, and D. Sylvester,
“Bubble razor: An architecture-independent
approach to timing-error detection and
correction,” in Proc. IEEE Int. Solid-State
Circuits Conf. Digest Tech. Papers (ISSCC),
Feb. 2012, pp. 488–490.

[82] I. Shin, J.-J. Kim, Y.-S. Lin, and Y. Shin,
“A pipeline architecture with 1-cycle
timing error correction for low voltage
operations,” in Proc. IEEE Int. Symp.
Low Power Electron. Design (ISLPED),
Sep. 2013, pp. 199–204.

[83] M. Choudhury, V. Chandra, K. Mohanram,
and R. Aitken, “Timber: Time borrowing
and error relaying for online timing error
resilience,” in Proc. Design, Autom., Test
Eur. Conf. Exhib., Mar. 2010, pp. 1554–1559.

[84] M. Choudhury, V. Chandra, R. Aitken, and
K. Mohanram, “Time-borrowing circuit
designs and hardware prototyping for timing
error resilience,” IEEE Trans. Comput.,
vol. 63, no. 2, pp. 497–509, Feb. 2014.

[85] K. Chae, S. Mukhopadhyay, C.-H. Lee, and
J. Laskar, “A dynamic timing control
technique utilizing time borrowing and clock
stretching,” in Proc. IEEE Custom Integr.
Circuits Conf. (CICC), Sep. 2010, pp. 1–4.

[86] K. Chae, C.-H. Lee, and S. Mukhopadhyay,
“Timing error prevention using elastic
clocking,” in Proc. IEEE Int. Conf. IC Design
Technol. (ICICDT), May 2011, pp. 1–4.

[87] M. Choudhury and K. Mohanram,
“Masking timing errors on speed-paths in

logic circuits,” in Proc. Design, Autom.,
Test Eur. Conference Exhib. (DATE ’09),
Apr. 2009, pp. 87–92.

[88] F. Yuan and Q. Xu, “Intimefix: A low-cost
and scalable technique for in-situ timing
error masking in logic circuits,” in Proc.
50th ACM/EDAC/IEEE Design Autom.
Conf. (DAC), May 2013, pp. 1–6.

[89] K. Bowman, J. Tschanz, N. S. Kim, J. Lee,
C. Wilkerson, S. Lu, T. Karnik, and V. De,
“Energy-efficient and metastability-immune
resilient circuits for dynamic variation
tolerance,” IEEE J. Solid-State Circuits,
vol. 44, no. 1, pp. 49–63, Jan. 2009.

[90] D. Ernst, S. Das, S. Lee, D. Blaauw,
T. Austin, T. Mudge, N. S. Kim, and
K. Flautner, “Razor: Circuit-level
correction of timing errors for low-power
operation,” IEEE Micro, vol. 24, no. 6,
pp. 10–20, Nov. 2004.

[91] B. Calhoun and A. Chandrakasan,
“Ultra-dynamic voltage scaling (udvs) using
sub-threshold operation and local voltage
dithering,” IEEE J. Solid-State Circuits,
vol. 41, no. 1, pp. 238–245, Jan. 2006.

[92] S. Miermont, P. Vivet, and M. Renaudin,
“A power supply selector for energy- and
area-efficient local dynamic voltage
scaling,” in Proc. 17th Int. Workshop Integr.
Circuit Syst. Design. Power Timing Modeling,
Optimiz., Simulation, 2007, pp. 556–565.
[Online]. Available: http://dx.doi.org/
10.1007/978-3-540-74442-9-54.

[93] L. Lai and P. Gupta, “Accurate and
inexpensive performance monitoring for
variability-aware systems,” in Proc. 19th
Asia South Pacific Design Autom. Conf.
(ASP-DAC), Jun. 2014, pp. 467–473.

[94] W. Baek and T. M. Chilimbi, “Green:
A framework for supporting
energy-conscious programming using
controlled approximation,” in Proc. 2010
ACM SIGPLAN Conf. Programming Lang.
Design Implemen., 2010, pp. 198–209.
[Online]. Available: http://doi.acm.org/
10.1145/1806596.1806620.

[95] S. Sidiroglou-Douskos, S. Misailovic,
H. Hoffmann, and M. Rinard, “Managing
performance vs. accuracy trade-offs with
loop perforation,” in Proc. 19th ACM
SIGSOFT Symp. 13th Eur. Conf. Foundations
Software Eng., 2011, pp. 124–134. [Online].
Available: http://doi.acm.org/10.1145/
2025113.2025133.

[96] S. Misailovic, D. Roy, and M. Rinard,
“Probabilistically accurate program
transformations,” in Static Analysis, Lecture
Notes in Computer Science, E. Yahav, Ed.,
Berlin, Germany: Springer-Verlag, 2011,
vol. 6887, pp. 316–333. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-
23702-7_24.

[97] L. Renganarayana, V. Srinivasan, R. Nair,
and D. Prener, “Programming with relaxed
synchronization,” in Proc. 2012 ACM
Workshop Relaxing Synchronization Multicore
Manycore Scalability, 2012, pp. 41–50.
[Online]. Available: http://doi.acm.org/
10.1145/2414729.2414737.

[98] M. Samadi, J. Lee, D. A. Jamshidi,
A. Hormati, and S. Mahlke, “Sage:
Self-tuning approximation for graphics
engines,” in Proc. 46th Annu. IEEE/ACM
Int. Symp. Microarch., 2013, pp. 13–24.
[Online]. Available: http://doi.acm.org/
10.1145/2540708.2540711.

[99] D. Mohapatra, V. Chippa, A. Raghunathan,
and K. Roy, “Design of voltage-scalable
meta-functions for approximate

computing,” in Proc. Design, Autom.,
Test Eur. Conf. Exhib., Mar. 2011, pp. 1–6.

[100] H. Cho, L. Leem, and S. Mitra, “Ersa:
Error resilient system architecture for
probabilistic applications,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst.,
vol. 31, no. 4, pp. 546–558, Apr. 2012.

[101] H. Esmaeilzadeh, A. Sampson, L. Ceze,
and D. Burger, “Neural acceleration for
general-purpose approximate programs,” in
Proc. 45th Annu. IEEE/ACM Int. Symp.
Microarch. (MICRO), Dec. 2012, pp. 449–460.

[102] H. Mahdiani, S. Fakhraie, and C. Lucas,
“Relaxed fault-tolerant hardware
implementation of neural networks in the
presence of multiple transient errors,”
IEEE Trans. Neural Netw. Learn. Syst.,
vol. 23, no. 8, pp. 1215–1228, Aug. 2012.

[103] A. Sampson, J. Nelson, K. Strauss, and
L. Ceze, “Approximate storage in solid-state
memories,” in Proc. 46th Annu. IEEE/ACM
Int. Symp. Microarch., 2013, pp. 25–36.
[Online]. Available: http://doi.acm.org/
10.1145/2540708.2540712.

[104] S.-L. Lu, “Speeding up processing with
approximation circuits,” Computer, vol. 37,
no. 3, pp. 67–73, Mar. 2004.

[105] K. Palem and A. Lingamneni, “Ten years
of building broken chips: The physics and
engineering of inexact computing,” ACM
Trans. Embed. Comput. Syst., vol. 12, no. 2s,
pp. 87:1–87:23, May 2013. [Online].
Available: http://doi.acm.org/10.1145/
2465787.2465789.

[106] N. Banerjee, G. Karakonstantis, and K. Roy,
“Process variation tolerant low power dct
architecture,” in Proc. Design, Autom., Test Eur.
Conf. Exhib. (DATE ’07), Apr. 2007, pp. 1–6.

[107] K. He, A. Gerstlauer, and M. Orshansky,
“Circuit-level timing-error acceptance for
design of energy-efficient dct/idct-based
systems,” IEEE Trans. Circuits Syst. Video
Technol., vol. 23, no. 6, pp. 961–974,
Jun. 2013.

[108] A. Pant, P. Gupta, and M. van der Schaar,
“Appadapt: Opportunistic application
adaptation in presence of hardware
variation,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 20, no. 11,
pp. 1986–1996, Nov. 2012.

[109] J. Sloan, R. Kumar, and G. Bronevetsky,
“Algorithmic approaches to low overhead
fault detection for sparse linear algebra,” in
Proc. 42nd Annu. IEEE/IFIP Int. Conf.
Dependable Syst. Netw. (DSN),
Jun. 2012, pp. 1–12.

[110] K. Hazelwood and D. Brooks, “Eliminating
voltage emergencies via microarchitectural
voltage control feedback and dynamic
optimization,” in Proc. 2004 Int. Symp.
Low Power Electron. Design (ISLPED ’04),
Aug. 2014, pp. 326–331.

[111] V. Reddi, S. Kanev, W. Kim, S. Campanoni,
M. Smith, G.-Y. Wei, and D. Brooks,
“Voltage smoothing: Characterizing and
mitigating voltage noise in production
processors via software-guided thread
scheduling,” in Proc. 43rd Annu. IEEE/ACM
Int. Symp. Microarch. (MICRO), Dec. 2010,
pp. 77–88.

[112] F. Paterna, A. Acquaviva, A. Caprara,
F. Papariello, G. Desoli, and L. Benini,
“Variability-aware task allocation for
energy-efficient quality of service provisioning
in embedded streaming multimedia
applications,” IEEE Trans. Comput., vol. 61,
no. 7, pp. 939–953, Jul. 2012.

[113] A. Rahimi, A. Marongiu, P. Burgio,
R. K. Gupta, and L. Benini,
“Variation-tolerant openmp tasking on

36 Proceedings of the IEEE |

Rahimi et al.: Variability Mitigation in Nanometer CMOS Integrated Systems

http://doi.acm.org/10.1145/2593069.2593184
http://doi.acm.org/10.1145/2593069.2593184
http://dl.acm.org/citation.cfm?id=2337159.2337187
http://dl.acm.org/citation.cfm?id=2337159.2337187
http://dx.doi.org/10.1007/978-3-540-74442-9-54
http://dx.doi.org/10.1007/978-3-540-74442-9-54
http://doi.acm.org/10.1145/1806596.1806620
http://doi.acm.org/10.1145/1806596.1806620
http://doi.acm.org/10.1145/2025113.2025133
http://doi.acm.org/10.1145/2025113.2025133
http://dx.doi.org/10.1007/978-3-642-23702-7_24
http://dx.doi.org/10.1007/978-3-642-23702-7_24
http://doi.acm.org/10.1145/2414729.2414737
http://doi.acm.org/10.1145/2414729.2414737
http://doi.acm.org/10.1145/2540708.2540711
http://doi.acm.org/10.1145/2540708.2540711
http://doi.acm.org/10.1145/2540708.2540712
http://doi.acm.org/10.1145/2540708.2540712
http://doi.acm.org/10.1145/2465787.2465789
http://doi.acm.org/10.1145/2465787.2465789

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

tightly-coupled processor clusters,” in Proc.
Design, Autom., Test Eur. Conf. Exhib.,
Mar. 2013, pp. 541–546.

[114] A. Rahimi, D. Cesarini, A. Marongiu,
R. K. Gupta, and L. Benini, “Task
scheduling strategies to mitigate hardware
variability in embedded shared memory
clusters,” in Proc. 52nd Annu. Design Autom.
Conf., 2015, pp. 152:1–152:6. [Online].
Available: http://doi.acm.org/10.1145/
2744769.2744915.

[115] A. Rahimi, D. Cesarini, A. Marongiu,
R. K. Gupta, and L. Benini, “Improving
resilience to timing errors by exposing
variability effects to software in
tightly-coupled processor clusters,” IEEE J.
Emerg. Sel. Topics Circuits Syst., vol. 4,
no. 2, pp. 216–229, Jun. 2014.

[116] P. Aguilera, J. Lee, A. Farmahini-Farahani,
K. Morrow, M. Schulte, and N. S. Kim,
“Process variation-aware workload
partitioning algorithms for gpus supporting
spatial-multitasking,” in Proc. Conf. Design,
Autom., Test Eur., 2014, pp. 176:1–176:6.
[Online]. Available: http://dl.acm.org/
citation.cfm?id=2616606.2616823.

[117] J. Dean and L. A. Barroso, “The tail at scale,”
ACM Commun., vol. 56, no. 2, pp. 74–80,
Feb. 2013. [Online]. Available: http://doi.
acm.org/10.1145/2408776.2408794.

[118] A. Rahimi, A. Marongiu, R. K. Gupta, and
L. Benini, “A variability-aware openmp
environment for efficient execution of
accuracy-configurable computation on
shared-fpu processor clusters,” in Proc. Int.
Conf. Hardware/Software Codesign Syst.
Synthesis (CODES+ISSS), Sep. 2013, pp. 1–10.

[119] M. Gupta, V. Reddi, G. Holloway, G.-Y. Wei,
and D. Brooks, “An event-guided approach
to reducing voltage noise in processors,” in
Proc. Design, Autom., Test Eur. Conf. Exhib.
(DATE ’09), Apr. 2009, pp. 160–165.

[120] V. Reddi and D. Brooks, “Resilient
architectures via collaborative design:
Maximizing commodity processor
performance in the presence of variations,”
IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 30, no. 10,
pp. 1429–1445, Oct. 2011.

[121] V. Kozhikkottu, S. Dey, and
A. Raghunathan, “Recovery-based design
for variation-tolerant socs,” in Proc. 49th
Annu. Design Autom. Conf., 2012,
pp. 826–833. [Online]. Available: http://
doi.acm.org/10.1145/2228360.2228510.

[122] H. Esmaeilzadeh, A. Sampson, L. Ceze,
and D. Burger, “Architecture support for
disciplined approximate programming,” in
Proc. 17th Int. Conf. Arch. Support Program.
Lang. Operating Syst., 2012, pp. 301–312.
[Online]. Available: http://doi.acm.org/
10.1145/2150976.2151008.

[123] C. Alvarez, J. Corbal, and M. Valero,
“Fuzzy memoization for floating-point
multimedia applications,” IEEE Trans.
Comput., vol. 54, no. 7, pp. 922–927,
Jul. 2005. [Online]. Available:
http://dx.doi.org/10.1109/TC.2005.119.

[124] C. Alvarez, J. Corbal, and M. Valero,
“Dynamic tolerance region computing for
multimedia,” IEEE Trans. Comput., vol. 61,
no. 5, pp. 650–665, May 2012. [Online].
Available: http://dx.doi.org/10.1109/
TC.2011.79.

[125] A. Rahimi, L. Benini, and R. K. Gupta,
“Spatial memoization: Concurrent
instruction reuse to correct timing errors
in simd architectures,” IEEE Trans. Circuits
Syst. II: Exp. Briefs, vol. 60, no. 12,
pp. 847–851, Dec. 2013.

[126] A. Rahimi, L. Benini, and R. K. Gupta,
“Temporal memoization for
energy-efficient timing error recovery in
gpgpus,” in Proc. Design, Autom., Test
Eur. Conf. Exhib., Mar. 2014, pp. 1–6.

[127] A. Rahimi, A. Ghofrani,
M. A. Lastras-Montano, K.-T. Cheng,
L. Benini, and R. K. Gupta, “Energy-
efficient gpgpu architectures via
collaborative compilation and memristive
memory-based computing,” in Proc.
51st Annu. Design Autom. Conf., 2014,
pp. 195:1–195:6. [Online]. Available: http://
doi.acm.org/10.1145/2593069.2593132.

[128] A. Rahimi, A. Ghofrani, K.-T. Cheng,
L. Benini, and R. K. Gupta, “Approximate
associative memristive memory for
energy-efficient gpus,” in Proc. 2015 Design
Autom. Test Eur. Conf. Exhib., 2015,
pp. 1497–1502. [Online]. Available:
http://dl.acm.org/citation.cfm?
id=2757012.2757158.

[129] S. M. Khan, A. R. Alameldeen,
C. Wilkerson, J. Kulkarni, and
D. A. Jimenez, “Improving multi-core
performance using mixed-cell cache
architecture,” in Proc. IEEE 19th Int. Symp.
High Perform. Comput. Arch. (HPCA2013),
Feb. 2013, pp. 119–130.

[130] F. Frustaci, M. Khayatzadeh, D. Blaauw,
D. Sylvester, and M. Alioto, “13.8 a 32 kb
sram for error-free and error-tolerant
applications with dynamic energy-quality
management in 28 nm cmos,” in Proc. IEEE
Int. Solid-State Circuits Conf. Digest Tech.
Papers (ISSCC), Feb. 2014, pp. 244–245.

[131] A. Teman, G. Karakonstantis, R. Giterman,
P. Meinerzhagen, and A. Burg, “Energy
versus data integrity trade-offs in
embedded high-density logic compatible
dynamic memories,” in Proc. 2015 Design,
Autom., Test Eur. Conf. Exhib., 2015,
pp. 489–494. [Online]. Available: http://dl.
acm.org/citation.cfm?id=2755753.2755864.

[132] A. Kahng, S. Kang, R. Kumar, and
J. Sartori, “Recovery-driven design: A
power minimization methodology for
error-tolerant processor modules,” in Proc.
47th ACM/IEEE Design Autom. Conf. (DAC),
Jun. 2010, pp. 825–830.

[133] J. Zhang, F. Yuan, R. Ye, and Q. Xu,
“Forter: A forward error correction scheme
for timing error resilience,” in Proc. Int.
Conf. Comput.-Aided Design, 2013,
pp. 55–60. [Online]. Available: http://dl.
acm.org/citation.cfm?id=2561828.2561839.

[134] T. Liu and S.-L. Lu, “Performance
improvement with circuit-level
speculation,” in Proc. 33rd Annu. IEEE/ACM
Int. Symp. Microarch. (MICRO-33), 2000,
pp. 348–355.

[135] A. Kahng and S. Kang, “Accuracy-configurable
adder for approximate arithmetic designs,”
in Proc. 49th ACM/EDAC/IEEE Design Autom.
Conf. (DAC), Jun. 2012, pp. 820–825.

[136] P. Whatmough, S. Das, and D. Bull,
“Hybrid circuit and algorithmic timing
error correction for low-power robust
dsp accelerators,” in Proc. IEEE Asian
Solid-State Circuits Conf. (A-SSCC),
Nov. 2013, pp. 29–32.

[137] P. Whatmough, S. Das, and D. Bull,
“A low-power 1-ghz razor fir accelerator
with time-borrow tracking pipeline and
approximate error correction in 65-nm
cmos,” IEEE J. Solid-State Circuits, vol. 49,
no. 1, pp. 84–94, Jan. 2014.

[138] M. Choudhury and K. Mohanram,
“Approximate logic circuits for low
overhead, non-intrusive concurrent error

detection,” in Proc. Design, Autom., Test
Eur. (DATE ’08), Mar. 2008, pp. 903–908.

[139] M. Choudhury and K. Mohanram,
“Low cost concurrent error masking using
approximate logic circuits,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst.,
vol. 32, no. 8, pp. 1163–1176, Aug. 2013.

[140] A. Sampson, W. Dietl, E. Fortuna,
D. Gnanapragasam, L. Ceze, and
D. Grossman, “Enerj: Approximate data
types for safe and general low-power
computation,” in Proc. 32nd ACM SIGPLAN
Conf. Programming Lang. Design
Implementation, 2011, pp. 164–174.
[Online]. Available: http://doi.acm.org/
10.1145/1993498.1993518.

[141] P. Gupta, Y. Agarwal, L. Dolecek, N. Dutt,
R. Gupta, R. Kumar, S. Mitra, A. Nicolau,
T. Rosing, M. Srivastava, S. Swanson, and
D. Sylvester, “Underdesigned and
opportunistic computing in presence of
hardware variability,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst.,
vol. 32, no. 1, pp. 8–23, Jan. 2013.

[142] G. Karakonstantis, A. Chatterjee, and
K. Roy, “Containing the nanometer
‘pandora-box’: Cross-layer design
techniques for variation aware low power
systems,” IEEE J. Emerg. Sel. Topics Circuits
Syst., vol. 1, no. 1, pp. 19–29, Mar. 2011.

[143] L. Leem, H. Cho, H.-H. Lee, Y. M. Kim,
Y. Li, and S. Mitra, “Cross-layer error
resilience for robust systems,” in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Design
(ICCAD), pp. 177–180.

[144] N. Carter, H. Naeimi, and D. Gardner,
“Design techniques for cross-layer
resilience,” in Proc. Design, Autom., Test Eur.
Conf. Exhib., Nov. 2010, pp. 1023–1028.

[145] J. Henkel, L. Bauer, J. Becker,
O. Bringmann, U. Brinkschulte,
S. Chakraborty, M. Engel, R. Ernst,
H. Hartig, L. Hedrich, A. Herkersdorf,
R. Kapitza, D. Lohmann, P. Marwedel,
M. Platzner, W. Rosenstiel, U.
Schlichtmann, O. Spinczyk, M. Tahoori,
J. Teich, N. When, and H. Wunderlich,
“Design and architectures for dependable
embedded systems,” in Proc. 9th Int. Conf.
Hardware/Software Codesign Syst. Synthesis
(CODES+ISSS), Oct. 2011, pp. 69–78.

[146] R. K. Iyer, “Hierarchical application aware
error detection and recovery,” in Proc. 41st
Annu. Design Autom. Conf., 2004,
pp. 79–79. [Online]. Available: http://doi.
acm.org/10.1145/996566.996592.

[147] H. Hoffmann, J. Holt, G. Kurian, E. Lau,
M. Maggio, J. E. Miller, S. M. Neuman,
M. Sinangil, Y. Sinangil, A. Agarwal,
A. P. Chandrakasan, and S. Devadas,
“Self-aware computing in the angstrom
processor,” in Proc. 49th Annu. Des. Autom.
Conf., 2012, pp. 259–264. [Online].
Available: http://doi.acm.org/10.1145/
2228360.2228409.

[148] A. Drake, R. Senger, H. Deogun,
G. Carpenter, S. Ghiasi, T. Nguyen,
N. James, M. Floyd, and V. Pokala,
“A distributed critical-path timing monitor
for a 65 nm high-performance
microprocessor,” in Proc. IEEE Int. Solid-State
Circuits Conf. (ISSCC 2007) Digest Tech.
Papers, Feb. 2007, pp. 398–399.

[149] J. Tschanz, K. Bowman, S. Walstra,
M. Agostinelli, T. Karnik, and V. De,
“Tunable replica circuits and adaptive
voltage-frequency techniques for dynamic
voltage, temperature, and aging variation
tolerance,” in Proc. Symp. VLSI Circuits,
Jun. 2009, pp. 112–113.

| Proceedings of the IEEE 37

Rahimi et al.: Variability Mitigation in Nanometer CMOS Integrated Systems

http://doi.acm.org/10.1145/2744769.2744915
http://doi.acm.org/10.1145/2744769.2744915
http://dl.acm.org/citation.cfm?id=2616606.2616823
http://dl.acm.org/citation.cfm?id=2616606.2616823
http://doi.acm.org/10.1145/2408776.2408794
http://doi.acm.org/10.1145/2408776.2408794
http://doi.acm.org/10.1145/2228360.2228510
http://doi.acm.org/10.1145/2228360.2228510
http://doi.acm.org/10.1145/2150976.2151008
http://doi.acm.org/10.1145/2150976.2151008
http://dx.doi.org/10.1109/TC.2005.119
http://dx.doi.org/10.1109/TC.2011.79
http://dx.doi.org/10.1109/TC.2011.79
http://doi.acm.org/10.1145/2593069.2593132
http://doi.acm.org/10.1145/2593069.2593132
http://dl.acm.org/citation.cfm?id=2757012.2757158
http://dl.acm.org/citation.cfm?id=2757012.2757158
http://dl.acm.org/citation.cfm?id=2755753.2755864
http://dl.acm.org/citation.cfm?id=2755753.2755864
http://dl.acm.org/citation.cfm?id=2561828.2561839
http://dl.acm.org/citation.cfm?id=2561828.2561839
http://doi.acm.org/10.1145/1993498.1993518
http://doi.acm.org/10.1145/1993498.1993518
http://doi.acm.org/10.1145/996566.996592
http://doi.acm.org/10.1145/996566.996592
http://doi.acm.org/10.1145/2228360.2228409
http://doi.acm.org/10.1145/2228360.2228409

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

[150] A. Raychowdhury, B. Geuskens, K. Bowman,
J. Tschanz, S. Lu, T. Karnik, M. Khellah, and
V. De, “Tunable replica bits for dynamic
variation tolerance in 8t sram arrays,” IEEE
J. Solid-State Circuits, vol. 46, no. 4,
pp. 797–805, Apr. 2011.

[151] T.-B. Chan, A. Pant, L. Cheng, and P. Gupta,
“Design dependent process monitoring for
back-end manufacturing cost reduction,” in
Proc. IEEE/ACM Int. Conf. Comput.-Aided
Design (ICCAD), Nov. 2010, pp. 116–122.

[152] P. Singh, E. Karl, D. Sylvester, and
D. Blaauw, “Dynamic nbti management
using a 45 nm multi-degradation sensor,”
IEEE Trans.Circuits Syst. I: Reg. Papers,
vol. 58, no. 9, pp. 2026–2037, Sep. 2011.

[153] R. McGowen, C. Poirier, C. Bostak,
J. Ignowski, M. Millican, W. Parks, and
S. Naffziger, “Power and temperature
control on a 90-nm itanium family
processor,” IEEE J. Solid-State Circuits,
vol. 41, no. 1, pp. 229–237, Jan. 2006.

[154] J. Tschanz, N. S. Kim, S. Dighe, J. Howard,
G. Ruhl, S. Vangal, S. Narendra,
Y. Hoskote, H. Wilson, C. Lam, M. Shuman,
C. Tokunaga, D. Somasekhar, S. Tang,
D. Finan, T. Karnik, N. Borkar, N. Kurd, and
V. De, “Adaptive frequency and biasing
techniques for tolerance to dynamic
temperature-voltage variations and aging,” in
Proc. IEEE Int. Solid-State Circuits Conf.
(ISSCC 2007) Digest Tech. Papers, Feb. 2007,
pp. 292–604.

[155] A. Muhtaroglu, G. Taylor, T. Rahal-Arabi,
and K. Callahan, “On-die droop detector
for analog sensing of power supply noise,”
in Proc. Symp. VLSI Circuits, Digest Techn.
Papers, Jun. 2003, pp. 193–196.

[156] S. Pant and D. Blaauw, “Circuit techniques
for suppression and measurement of
on-chip inductive supply noise,” in Proc.
34th Eur. Solid-State Circuits Conf.
(ESSCIRC 2008), Sep. 2008, pp. 134–137.

[157] K. Kang, S. P. Park, K. Kim, and K. Roy,
“On-chip variability sensor using
phase-locked loop for detecting and
correcting parametric timing failures,”
IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 18, no. 2, pp. 270–280,
Feb. 2010.

[158] M. Bhushan, A. Gattiker, M. Ketchen, and
K. Das, “Ring oscillators for cmos process
tuning and variability control,” IEEE Trans.
Semiconductor Manufact., vol. 19, no. 1,
pp. 10–18, Feb. 2006.

[159] L. Vincent, P. Maurine, S. Lesecq, and
E. Beigne, “Embedding statistical tests for
on-chip dynamic voltage and temperature
monitoring,” in Proc. 49th ACM/EDAC/IEEE
Design Autom. Conference (DAC), Jun. 2012,
pp. 994–999.

[160] D. Bol, J. De Vos, C. Hocquet, F. Botman,
F. Durvaux, S. Boyd, D. Flandre, and
J. Legat, “Sleepwalker: A 25-mhz 0.4-v
sub- mm2 7- �W/MHz microcontroller in
65-nm lp/gp cmos for low-carbon wireless
sensor nodes,” IEEE J. Solid-State Circuits,
vol. 48, no. 1, pp. 20–32, Jan. 2013.

[161] K. Bowman, C. Tokunaga, T. Karnik, V. De,
and J. Tschanz, “A 22 nm all-digital
dynamically adaptive clock distribution for
supply voltage droop tolerance,” IEEE J.
Solid-State Circuits, vol. 48, no. 4,
pp. 907–916, Apr. 2013.

[162] D. Blaauw, S. Kalaiselvan, K. Lai, W.-H. Ma,
S. Pant, C. Tokunaga, S. Das, and D. Bull,
“Razor ii: in situ error detection and
correction for pvt and ser tolerance,” in
Proc. IEEE Int. Solid-State Circuits Conf.
(ISSCC 2008) Digest Tech. Papers, Feb. 2008,
pp. 400–622.

[163] S. Kim, I. Kwon, D. Fick, M. Kim,
Y.-P. Chen, and D. Sylvester, “Razor-lite:
A side-channel error-detection register for
timing-margin recovery in 45 nm soi
cmos,” in Proc. IEEE Int. Solid-State Circuits
Conf. Digest Tech. Papers (ISSCC),
Feb. 2013, pp. 264–265.

[164] M. Turnquist, E. Laulainen, J. Makipaa,
and L. Koskinen, “Measurement of a
system-adaptive error-detection sequential
circuit with subthreshold scl,” in Proc.
NORCHIP, Nov. 2011, pp. 1–4.

[165] T. Sato and Y. Kunitake, “A simple flip-flop
circuit for typical-case designs for dfm,” in
Proc. 8th Int. Symp. Quality Electron. Design,
2007, pp. 539–544. [Online]. Available:
http://dx.doi.org/10.1109/ISQED.2007.23.

[166] L. Lai, V. Chandra, R. Aitken, and P. Gupta,
“Slackprobe: A low overhead in situ on-line
timing slack monitoring methodology,” in
Proc. Conference on Design, Autom., Test Eur.,
2013, pp. 282–287. [Online]. Available:
http://dl.acm.org/citation.cfm?
id=2485288.2485358.

[167] H. Park and C.-H. Yang, “In situ sram
static stability estimation in 65-nm cmos,”
IEEE J. Solid-State Circuits, vol. 48, no. 10,
pp. 2541–2549, Oct. 2013.

[168] J. Tschanz, K. Bowman, S. Walstra,
M. Agostinelli, T. Karnik, and V. De,
“Tunable replica circuits and adaptive
voltage-frequency techniques for dynamic
voltage, temperature, and aging variation
tolerance,” in Proc. Symp. VLSI Circuits,
pp. 112–113.

[169] C. Lefurgy, A. Drake, M. Floyd,
M. Allen-Ware, B. Brock, J. Tierno,
J. Carter, and R. Berry, “Active guardband
management in power7+ to save energy
and maintain reliability,” IEEE Micro,
vol. 33, no. 4, pp. 35–45, Jul. 2013.

[170] F. Chaix, G. Bizot, M. Nicolaidis, and
N.-E. Zergainoh, “Variability-aware task
mapping strategies for many-cores
processor chips,” in Proc. IEEE 17th Int.
On-Line Testing Symp. (IOLTS), Jul. 2011,
pp. 55–60.

[171] S. Sarangi, B. Greskamp, R. Teodorescu,
J. Nakano, A. Tiwari, and J. Torrellas,
“Varius: A model of process variation and
resulting timing errors for microarchitects,”
IEEE Trans. Semiconductor Manufact.,
vol. 21, no. 1, pp. 3–13, Feb. 2008.

[172] C. Albea, D. Puschini, P. Vivet,
I. Miro-Panades, E. Beigné, and S. Lesecq,
“Architecture and robust control of a
digital frequency-locked loop for fine-grain
dynamic voltage and frequency scaling in
globally asynchronous locally synchronous
structures,” J. Low Power Electron., vol. 7,
no. 3, pp. 328–340, Aug. 2011.

[173] J. Lee, P. Ajgaonkar, and N. S. Kim,
“Analyzing throughput of gpgpus exploiting
within-die core-to-core frequency
variation,” in Proc. 2011 IEEE Int. Symp.
Perform. Anal. Syst. Software (ISPASS),
Apr. 2011, pp. 237–246.

[174] Amd app sdk v2.5. [Online]. Available:
http://www.amd.com/stream.

[175] A. Rahimi, I. Loi, M. Kakoee, and
L. Benini, “A fully-synthesizable
single-cycle interconnection network for
shared-l1 processor clusters,” in Proc.
Design, Autom., Test Eur. Conf. Exhib., Mar.
2011, pp. 1–6.

[176] L. Benini, E. Flamand, D. Fuin, and
D. Melpignano, “P2012: Building an
ecosystem for a scalable, modular and
high-efficiency embedded computing
accelerator,” in Proc. Design, Autom., Test
Eur. Conf. Exhib., Mar. 2012, pp. 983–987.

[177] The GNU Project, GompVAn Openmp
Implementation for GCC. [Online].
Available: http://gcc.gnu.org/projects/gomp.

[178] A. Rahimi, L. Benini, and R. K. Gupta,
“Analysis of Cross-Layer Vulnerability to
Variations: An Adaptive Instruction-Level
to Task-Level Approach,” Dept. Comput.
Sci. Eng., Univ. California San Diego,
La Jolla, CA, USA, Tech. Rep. CS2014-1004,
Feb. 2014, 92093.

[179] A. Rahimi, L. Benini, and R. K. Gupta,
“Temporal Memoization for Energy-Efficient
Timing Error Recovery in GPGPU
Architectures,” Dept. Comput. Sci. Eng.,
Univ. California San Diego, La Jolla,
CA, USA, Tech. Rep. CS2014-1006,
Jun. 2014, 92093.

ABOUT THE AUTHORS

Abbas Rahimi (Student Member, IEEE) received

the B.S. degree in computer engineering from the

University of Tehran, Tehran, Iran, in March 2010,

and the M.S. and a Ph.D. degrees in computer

science and engineering from the University

of California, San Diego, La Jolla, CA, USA, in

September 2015.

He is currently a Postdoctoral Scholar in the

Department of Electrical Engineering and Com-

puter Sciences at the University of California,

Berkeley, CA, USA. He is a Member of the Berkeley Wireless Research

Center and collaborating with the Berkeley Redwood Center for Theo-

retical Neuroscience. His research interests include brain-inspired com-

puting, massively parallel memory-centric architectures, embedded

systems and software with an emphasis on improving energy-efficiency

and robustness in the presence of variability-induced errors and approx-

imation opportunities. His doctoral dissertation has been selected to re-

ceive the 2015 Outstanding Dissertation Award in the area of new

directions in embedded system design and embedded software from the

European Design and Automation Association.

Dr. Rahimi received the Best Paper Candidate at 50th IEEE/ACM De-

sign Automation Conference.

38 Proceedings of the IEEE |

Rahimi et al.: Variability Mitigation in Nanometer CMOS Integrated Systems

http://dx.doi.org/10.1109/ISQED.2007.23
http://dl.acm.org/citation.cfm?id=2485288.2485358
http://dl.acm.org/citation.cfm?id=2485288.2485358
http://www.amd.com/stream
http://gcc.gnu.org/projects/gomp

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Luca Benini (Fellow, IEEE) received the Ph.D.

from Standford University.

He is a Full Professor at the University of

Bologna, Bologna, Italy, and he is the Chair of

Digital Integrated Circuits and Systems at ETHZ.

He has served as Chief Architect for the

Platform2012/STHORM project in STmicroelec-

tronics, Grenoble in the period 2009–2013. He

has held visiting and consulting researcher posi-

tions at EPFL, IMEC, Hewlett-Packard Laborato-

ries, and Stanford University. His research interests include energy-

efficient system design and multicore SoC design. He is also active in

the area of energy-efficient smart sensors and sensor networks for

biomedical and ambient intelligence applications. He has published

more than 700 papers in peer-reviewed international journals and

conferences, four books, and several book chapters.

Dr. Benini is a Member of the Academia Europaea.

Rajesh K. Gupta (Fellow, IEEE) received the

B.Tech. degree in electrical engineering from the

Indian Institute of Technology, Kanpur, Kalyanpur,

India, in 1984, the M.S. degree in electrical engi-

neering and computer science from the University

of California, Berkeley, CA, USA, in 1986, and the

Ph.D. degree in electrical engineering from

Stanford University, Stanford, CA, USA, in 1994.

He is a Professor of Computer Science and

Engineering at the University of California, San

Diego (UCSD), La Jolla, CA, USA, and holds the Qualcomm Endowed

Chair. He directs the smart buildings/smart grids task force at UCSD in

his role as Associate Director for the California Institute for Telecom-

munications and Information Technology (CalIT2). His recent contribu-

tions include SystemC modeling and SPARK parallelizing high-level

synthesis, both of which are publicly available and have been incorpo-

rated into industrial practice. Earlier, he led or coled DARPA-sponsored

efforts under the Data Intensive Systems (DIS) and Power Aware

Computing and Communications (PACC) programs that demonstrated

architectural adaptation and compiler optimizations in building high-

performance and energy-efficient system architectures. He currently

leads the National Science Foundation Expedition on Variability.

| Proceedings of the IEEE 39

Rahimi et al.: Variability Mitigation in Nanometer CMOS Integrated Systems

